- •5.Доверительный интервал для генеральной доли.
- •6.Объем выборки, необходимый для оценки генеральной доли.
- •7.Испытание гипотез, процедура испытания гипотез, односторонняя и двусторонняя проверки, статистика.
- •8.Испытание гипотезы на основе выборочной средней при известной генеральной дисперсии.
- •9.Испытание гипотезы на основе выборочной средней при неизвестной генеральной дисперсии.
- •10.Испытание гипотезы на основе выборочной доли.
- •15.Испытание гипотезы по двум выборочным долям.
- •16.Испытание гипотез по спаренным данным (зависимые выборки).
- •17. Непараметрические испытания гипотез. Таблица сопряженности. Критерий Хи-квадрат. Поправка Йетса.
- •18. Простая модель линейной регрессии. Расчет коэффициентов в модели парной линейной регрессии.
- •19. Коэффициент корреляции Пирсона г. Объясненная, необъясненная и общая вариации переменной у. Коэффициент детерминации. Ошибки и остатки.
- •20.Предсказания и прогнозы на основе модели линейной регрессии.
- •21. Основные предпосылки в модели парной линейной регрессии
- •22. Испытание гипотезы для оценки линейности связи на основе оценки коэффициента корреляции в генеральной совокупности.
- •23.Испытание гипотезы для оценки линейности связи на основе оценки показателя наклона линейной регрессии
- •24.Доверительные интервалы в линейном регрессионном анализе. Доверительный интервал для показателя наклона линейной регрессии.
- •26. Доверительный интервал для индивидуальных значений у при заданном значении х.
- •27.Множественная линейная регрессия. Основные предпосылки модели множественной линейной регрессии.
- •28.Расчет коэффициентов множественной линейной регрессии методом наименьших квадратов (мнк).
- •29.Стандартные ошибки коэффициентов в модели множественной линейной регрессии. Стандартная ошибка регрессии.
- •30.Интервальные оценки теоретического уравнения линейной регрессии.
- •31. Проверка статистической значимости коэффициентов уравнения линейной регрессии.
- •32. Проверка общего качества уравнения линейной регрессии. Коэффициент детерминации. Исправленный коэффициент детерминации.
- •33. Проверка равенства двух коэффициентов детерминации.
- •34. Проверка гипотезы о совпадении уравнений регрессии для двух выборок. Тест Чоу.
- •35. Регрессия и Excel.
- •36. Гетероскедастичность, ее последствия. Тест ранговой корреляции Спирмена.
- •37. Тест Голдфелда-Квандта
- •38. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений квадратам значений независимой переменной.
- •39 Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений значениям независимой переменной.
- •41.Критерий Дарбина-Уотсона.
- •42.Мультиколлинеарность и ее последствия. Установление мультикол линеарности. Частные коэффициенты корреляции. Корреляционная матрица. Методы устранения мультиколлинеарности.
- •44.Дисперсионный анализ. Межгрупповая вариация. Внутри групповая вариация. Однофакторный дисперсионный анализ.
- •45.Двухфакторный дисперсионный анализ. Уровни фактора. Двухфакторный дисперсионный анализ без повторений. Двухфакторный дисперсионный анализ с повторениями.
- •46.Временные ряды. Элементы временного ряда (тренд, сезонная вариация, ошибки mad и mse).
- •47. Расчет сезонной вариации в аддитивной модели. Центрированная скользящая средняя.
- •52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
- •53 Прогнозирование в мультипликативной модели
- •54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
- •55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
- •57. Косвенный метод наименьших квадратов
- •58. Методы экспертных оценок. Метод Дельфи. Метод написания сценария. Использование экспертных оценок в аналитической деятельности.
- •59.Анализ временных рядов в Excel.
- •60. Меры связи. Положительная связь. Отрицательная связь. Коэффициент Фехнера (коэффициент корреляции знаков).
- •62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
- •63. Выбор метода прогнозирования.
- •64. Адаптивные методы прогнозирования в экономических исследованиях
- •65. Модели экономического прогнозирования
- •66.Трендовые модели
- •67.Регрессионные модели
- •72 Модель прогнозирования стабильности цен
- •73 Матричные модели прогнозирования
- •74 Модели многомерных классификаций в прогнозных расчетах
- •75 Модель прогнозирования по неполным данным
- •76. Модели сезонных колебаний
- •77)Коэффициент автокорреляции
- •78) Прогноз коэффициентов и показателей в модели динамической регрессии
- •80) Многофакторная регрессионная модель с адаптивным механизмом
- •81Дисперсионное отношение
- •82 Адаптивная многорегрессионная модель
- •83 Расстояние Махаланобиса
- •84 Взвешенное Евклидово расстояние
- •85. Коэффициент ковариации между j и eе показателями
- •86Евклидова метрика
- •87.Модели с аддитивными и мультипликативными составляющими
- •88.Логистическая кривая Перла-Рида
- •89.Кривая Гомпертца
80) Многофакторная регрессионная модель с адаптивным механизмом
Необходимость применения принципов адаптации при построении многофакторных моделей возникает тогда, когда есть основание считать, что степень влияния факторов на моделируемый показатель зависит от времени, т.е. когда для достижения адекватности реальному процессу требуется модель с изменяющимися во времени коэффициентами. В общем случае такую модель можно записать в виде
, (5.40)
где
значение
зависимой переменной (показателя) в
момент
;
-мерная
вектор-строка значений независимых
переменных (факторов) в момент
;
-мерный
вектор-столбец оцениваемых коэффициентов
модели, изменяющих с течением времени
свои значения по неизвестному закону;
ненаблюдаемая
случайная ошибка.
81Дисперсионное отношение
F-критерий Фишера называют дисперсионным отношением, так как он формируется как отношение двух сравниваемых несмещенных оценок дисперсий.
Пусть
в результате наблюдений получены две
выборки. По ним вычислены дисперсии
и
,
имеющие
и
степеней
свободы. Будем считать, что первая
выборка взята из генеральной совокупности
с дисперсией
,
а вторая – из генеральной совокупности
с дисперсией
.
Выдвигается нулевая гипотеза о равенстве
двух дисперсий, т.е. H0:
или
.
Для того, чтобы отвергнуть эту гипотезу
нужно доказать значимость различия при
заданном уровне значимости
.
Значение критерия вычисляется по формуле:
.
82 Адаптивная многорегрессионная модель
Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной.
М. p. — метод многомерного анализа, посредством к-рого зависимая переменная (или критерий) Y связывается с совокупностью независимых переменных (или предикторов) Xпосредством линейного уравненияY' = а + b1Х1 + b2Х2 + ... + bkXk. Коэффициенты регрессии или, по-другому, весовые коэффициенты b обычно определяют методом наименьших квадратов, минимизируя сумму квадратов отклонений фактических значений зависимой переменной от соотв. предсказанных значений.
83 Расстояние Махаланобиса
расстояние
Махалано́биса —
мера расстояния между
векторами случайных величин, обобщающая
понятие евклидова расстояния. С
помощью расстояния Махаланобиса можно
определять сходствонеизвестной
и известной выборки.
Оно отличается от расстояния
Евклида тем,
что учитывает корреляции между
переменными и инвариантно к масштабу.
Формально, расстояние Махаланобиса от
многомерного вектора
до
множества со средним значением
и матрицей
ковариации
определяется
следующим образом:
[2]
Расстояние
Махаланобиса также можно определить
как меру несходства между двумя случайными
векторами
и
из
одного распределения
вероятностей с матрицей
ковариации
:
Если матрица ковариации является единичной матрицей, то расстояние Махаланобиса становится равным расстоянию Евклида. Если матрица ковариации диагональная (но необязательно единичная), то получившаяся мера расстояния носит название нормализованное расстояние Евклида:
Здесь
— среднеквадратичное
отклонение
от
в
выборке.
