- •5.Доверительный интервал для генеральной доли.
- •6.Объем выборки, необходимый для оценки генеральной доли.
- •7.Испытание гипотез, процедура испытания гипотез, односторонняя и двусторонняя проверки, статистика.
- •8.Испытание гипотезы на основе выборочной средней при известной генеральной дисперсии.
- •9.Испытание гипотезы на основе выборочной средней при неизвестной генеральной дисперсии.
- •10.Испытание гипотезы на основе выборочной доли.
- •15.Испытание гипотезы по двум выборочным долям.
- •16.Испытание гипотез по спаренным данным (зависимые выборки).
- •17. Непараметрические испытания гипотез. Таблица сопряженности. Критерий Хи-квадрат. Поправка Йетса.
- •18. Простая модель линейной регрессии. Расчет коэффициентов в модели парной линейной регрессии.
- •19. Коэффициент корреляции Пирсона г. Объясненная, необъясненная и общая вариации переменной у. Коэффициент детерминации. Ошибки и остатки.
- •20.Предсказания и прогнозы на основе модели линейной регрессии.
- •21. Основные предпосылки в модели парной линейной регрессии
- •22. Испытание гипотезы для оценки линейности связи на основе оценки коэффициента корреляции в генеральной совокупности.
- •23.Испытание гипотезы для оценки линейности связи на основе оценки показателя наклона линейной регрессии
- •24.Доверительные интервалы в линейном регрессионном анализе. Доверительный интервал для показателя наклона линейной регрессии.
- •26. Доверительный интервал для индивидуальных значений у при заданном значении х.
- •27.Множественная линейная регрессия. Основные предпосылки модели множественной линейной регрессии.
- •28.Расчет коэффициентов множественной линейной регрессии методом наименьших квадратов (мнк).
- •29.Стандартные ошибки коэффициентов в модели множественной линейной регрессии. Стандартная ошибка регрессии.
- •30.Интервальные оценки теоретического уравнения линейной регрессии.
- •31. Проверка статистической значимости коэффициентов уравнения линейной регрессии.
- •32. Проверка общего качества уравнения линейной регрессии. Коэффициент детерминации. Исправленный коэффициент детерминации.
- •33. Проверка равенства двух коэффициентов детерминации.
- •34. Проверка гипотезы о совпадении уравнений регрессии для двух выборок. Тест Чоу.
- •35. Регрессия и Excel.
- •36. Гетероскедастичность, ее последствия. Тест ранговой корреляции Спирмена.
- •37. Тест Голдфелда-Квандта
- •38. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений квадратам значений независимой переменной.
- •39 Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений значениям независимой переменной.
- •41.Критерий Дарбина-Уотсона.
- •42.Мультиколлинеарность и ее последствия. Установление мультикол линеарности. Частные коэффициенты корреляции. Корреляционная матрица. Методы устранения мультиколлинеарности.
- •44.Дисперсионный анализ. Межгрупповая вариация. Внутри групповая вариация. Однофакторный дисперсионный анализ.
- •45.Двухфакторный дисперсионный анализ. Уровни фактора. Двухфакторный дисперсионный анализ без повторений. Двухфакторный дисперсионный анализ с повторениями.
- •46.Временные ряды. Элементы временного ряда (тренд, сезонная вариация, ошибки mad и mse).
- •47. Расчет сезонной вариации в аддитивной модели. Центрированная скользящая средняя.
- •52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
- •53 Прогнозирование в мультипликативной модели
- •54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
- •55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
- •57. Косвенный метод наименьших квадратов
- •58. Методы экспертных оценок. Метод Дельфи. Метод написания сценария. Использование экспертных оценок в аналитической деятельности.
- •59.Анализ временных рядов в Excel.
- •60. Меры связи. Положительная связь. Отрицательная связь. Коэффициент Фехнера (коэффициент корреляции знаков).
- •62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
- •63. Выбор метода прогнозирования.
- •64. Адаптивные методы прогнозирования в экономических исследованиях
- •65. Модели экономического прогнозирования
- •66.Трендовые модели
- •67.Регрессионные модели
- •72 Модель прогнозирования стабильности цен
- •73 Матричные модели прогнозирования
- •74 Модели многомерных классификаций в прогнозных расчетах
- •75 Модель прогнозирования по неполным данным
- •76. Модели сезонных колебаний
- •77)Коэффициент автокорреляции
- •78) Прогноз коэффициентов и показателей в модели динамической регрессии
- •80) Многофакторная регрессионная модель с адаптивным механизмом
- •81Дисперсионное отношение
- •82 Адаптивная многорегрессионная модель
- •83 Расстояние Махаланобиса
- •84 Взвешенное Евклидово расстояние
- •85. Коэффициент ковариации между j и eе показателями
- •86Евклидова метрика
- •87.Модели с аддитивными и мультипликативными составляющими
- •88.Логистическая кривая Перла-Рида
- •89.Кривая Гомпертца
63. Выбор метода прогнозирования.
Выбор метода прогнозирования, с одной стороны, должен обеспечить функциональную полноту, достоверность и точность прогноза, а, с другой стороны, уменьшить затраты времени и средств на прогнозирование. Поэтому на выбор метода прогнозирования влияют:
1) существо практической проблемы, подлежащей решению;
2) характеристика объекта прогнозирования и рыночной среды;
3) характер располагаемой информации;
4) жизненный цикл товара или услуги;
5) период упреждения (на какой период рассматривается);
6) требования к результатам прогнозирования (точный или без особых деталей);
7) тип менеджмента
64. Адаптивные методы прогнозирования в экономических исследованиях
При обработке временных рядов, как правило, наиболее ценной является информация последнего периода, т.к. необходимо знать, как будет развиваться тенденция, существующая в данный момент, а не тенденция, сложившаяся в среднем на всем рассматриваемом периоде. Адаптивными называются методы прогнозирования, позволяющие строить самокорректирующиеся (самонастраивающиеся) экономико-математические модели, которые способны оперативно реагировать на изменение условий путем учета результата прогноза, сделанного на предыдущем шаге, и учета различной информационной ценности уровней ряда.
Адаптивные методы:
- Экспоненциальное сглаживание;
- Адаптивные полиномиальные модели;
- Адаптивные модели сезонных явлений.
65. Модели экономического прогнозирования
Под экономико-математической моделью понимается методика доведения до полного, исчерпывающего описания процесса получения и обработки исходной информации и правил решения рассматриваемой задачи в достаточно широком классе конкретных случаев. Экономическое моделирование основано на обработке статистической информации ретроспективного характера, оценке отдельных переменных величин, их параметров.
Модели экономического прогнозирования:
-модель межотраслевого баланса;
- макроэкономические модели;
-оптимизационные модели;
-статистические;
-динамические;
- факторные, структурные и комбинированные.
66.Трендовые модели
Модели:
-
постоянный рост:
– линейная;
- увеличивающийся рост: – парабола; – показательная;
-
уменьшающийся рост:
- линейная логарифмическая; при
< 1 – степенная; - модифицированная
гипербола; – модифицированная экспонента;
-
комбинированный рост:
с
–
логарифмическая парабола;
с
- полином третьей степени.
-
рост с качественным изменением
динамических характеристик:
–
кривая Гомпертца;
- логистическая кривая Перла – Рида.
67.Регрессионные модели
Регрессионная модель – это функция, описывающая зависимость между количественными характеристиками сложных систем. Получение регрессионной модели происходит в два этапа:
подбор вида функции;
вычисление параметров функции.
Чаще всего выбор производится среди следующих функций:
y=ax+b – линейная функция;
y=ax2+bx+c – квадратичная функция;
y=aln(x)+b – логарифмическая функция;
y=aebx - экспоненциальная функция;
y=axb - степенная функция.
68.Модель регрессии: с автокоррелированными остатками
1. Критерий Дарбина – Уотсона
2. Коэффициент автокорреляции
3. Преобразование исходных данных
где
такое, что
Матрица
представляет собой корень квадратный
из матрицы, обратной к ковариационной
матрице остатков и имеет вид
69.Авторегрессионные модели - модель временных рядов, в которой значения временного ряда в данный момент линейно зависят от предыдущих значений этого же ряда. Авторегрессионный процесс порядка p (AR(p)-процесс) определяется следующим образом.
1. Модель авторегрессии первого порядка AR(1)
2. Модель скользящей средней ARMA(1,1)
где
3. Авторегрессионная модель скользящей средней ARIMA(1,1)
где
– ненаблюдаемая ошибка в данном
уравнении.
4. Коэффициент автокорреляции
70.Модель динамической регрессии
Пусть модель записывается следующим образом:
и её коэффициенты являются, например, функциями вида:
Тогда
71 Многофакторные адаптивные модели
Применяются когда для достижения адекватности реальному процессу требуется модель с изменяющимися во времени коэффициентами. В общем случае такую модель можно записать в виде:
,
1. Многофакторная регрессионная модель с адаптивным механизмом в виде рекуррентных формул:
где
– начальные значения, определяемые по
методу наименьших квадратов.
2.Критерии настройки параметра адаптации
,
где
;
3. Дисперсионное отношение Фишера для адаптивных регрессионных моделей
,
где
–
экспоненциально взвешенное среднее
значение;
–
расчетные значения адаптивной модели.
