- •5.Доверительный интервал для генеральной доли.
- •6.Объем выборки, необходимый для оценки генеральной доли.
- •7.Испытание гипотез, процедура испытания гипотез, односторонняя и двусторонняя проверки, статистика.
- •8.Испытание гипотезы на основе выборочной средней при известной генеральной дисперсии.
- •9.Испытание гипотезы на основе выборочной средней при неизвестной генеральной дисперсии.
- •10.Испытание гипотезы на основе выборочной доли.
- •15.Испытание гипотезы по двум выборочным долям.
- •16.Испытание гипотез по спаренным данным (зависимые выборки).
- •17. Непараметрические испытания гипотез. Таблица сопряженности. Критерий Хи-квадрат. Поправка Йетса.
- •18. Простая модель линейной регрессии. Расчет коэффициентов в модели парной линейной регрессии.
- •19. Коэффициент корреляции Пирсона г. Объясненная, необъясненная и общая вариации переменной у. Коэффициент детерминации. Ошибки и остатки.
- •20.Предсказания и прогнозы на основе модели линейной регрессии.
- •21. Основные предпосылки в модели парной линейной регрессии
- •22. Испытание гипотезы для оценки линейности связи на основе оценки коэффициента корреляции в генеральной совокупности.
- •23.Испытание гипотезы для оценки линейности связи на основе оценки показателя наклона линейной регрессии
- •24.Доверительные интервалы в линейном регрессионном анализе. Доверительный интервал для показателя наклона линейной регрессии.
- •26. Доверительный интервал для индивидуальных значений у при заданном значении х.
- •27.Множественная линейная регрессия. Основные предпосылки модели множественной линейной регрессии.
- •28.Расчет коэффициентов множественной линейной регрессии методом наименьших квадратов (мнк).
- •29.Стандартные ошибки коэффициентов в модели множественной линейной регрессии. Стандартная ошибка регрессии.
- •30.Интервальные оценки теоретического уравнения линейной регрессии.
- •31. Проверка статистической значимости коэффициентов уравнения линейной регрессии.
- •32. Проверка общего качества уравнения линейной регрессии. Коэффициент детерминации. Исправленный коэффициент детерминации.
- •33. Проверка равенства двух коэффициентов детерминации.
- •34. Проверка гипотезы о совпадении уравнений регрессии для двух выборок. Тест Чоу.
- •35. Регрессия и Excel.
- •36. Гетероскедастичность, ее последствия. Тест ранговой корреляции Спирмена.
- •37. Тест Голдфелда-Квандта
- •38. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений квадратам значений независимой переменной.
- •39 Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений значениям независимой переменной.
- •41.Критерий Дарбина-Уотсона.
- •42.Мультиколлинеарность и ее последствия. Установление мультикол линеарности. Частные коэффициенты корреляции. Корреляционная матрица. Методы устранения мультиколлинеарности.
- •44.Дисперсионный анализ. Межгрупповая вариация. Внутри групповая вариация. Однофакторный дисперсионный анализ.
- •45.Двухфакторный дисперсионный анализ. Уровни фактора. Двухфакторный дисперсионный анализ без повторений. Двухфакторный дисперсионный анализ с повторениями.
- •46.Временные ряды. Элементы временного ряда (тренд, сезонная вариация, ошибки mad и mse).
- •47. Расчет сезонной вариации в аддитивной модели. Центрированная скользящая средняя.
- •52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
- •53 Прогнозирование в мультипликативной модели
- •54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
- •55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
- •57. Косвенный метод наименьших квадратов
- •58. Методы экспертных оценок. Метод Дельфи. Метод написания сценария. Использование экспертных оценок в аналитической деятельности.
- •59.Анализ временных рядов в Excel.
- •60. Меры связи. Положительная связь. Отрицательная связь. Коэффициент Фехнера (коэффициент корреляции знаков).
- •62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
- •63. Выбор метода прогнозирования.
- •64. Адаптивные методы прогнозирования в экономических исследованиях
- •65. Модели экономического прогнозирования
- •66.Трендовые модели
- •67.Регрессионные модели
- •72 Модель прогнозирования стабильности цен
- •73 Матричные модели прогнозирования
- •74 Модели многомерных классификаций в прогнозных расчетах
- •75 Модель прогнозирования по неполным данным
- •76. Модели сезонных колебаний
- •77)Коэффициент автокорреляции
- •78) Прогноз коэффициентов и показателей в модели динамической регрессии
- •80) Многофакторная регрессионная модель с адаптивным механизмом
- •81Дисперсионное отношение
- •82 Адаптивная многорегрессионная модель
- •83 Расстояние Махаланобиса
- •84 Взвешенное Евклидово расстояние
- •85. Коэффициент ковариации между j и eе показателями
- •86Евклидова метрика
- •87.Модели с аддитивными и мультипликативными составляющими
- •88.Логистическая кривая Перла-Рида
- •89.Кривая Гомпертца
62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
Критерий - статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.
Пусть дана случайная величина X .
Гипотеза
:
с. в. X подчиняется закону распределения
.
Для
проверки гипотезы рассмотрим выборку,
состоящую из n независимых наблюдений
над с.в. X:
.
По выборке построим эмпирическое
распределение
с.в
X. Сравнение эмпирического
и
теоретического распределения
(предполагаемого
в гипотезе) производится с помощью
специально подобранной функции —
критерия
согласия.
Рассмотрим критерий согласия Пирсона
(критерий
):
Гипотеза
:
Хn
порождается функцией
.
Разделим
[a,b] на k непересекающихся интервалов
;
Пусть
-
количество наблюдений в j-м интервале:
;
-
вероятность попадания наблюдения в
j-ый интервал при выполнении гипотезы
;
-
ожидаемое число попаданий в j-ый интервал;
Статистика:
-
Распределение
хи-квадрат
с k-1 степенью свободы.
Проверка гипотезы
Распределение хи-квадрат
В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:
,
гипотеза
выполняется.
(попадает
в левый "хвост" распределения).
Следовательно, теоретические и
практические значения очень близки.
Если, к примеру, происходит проверка
генератора случайных чисел, который
сгенерировал n чисел из отрезка [0,1] и
гипотеза
:
выборка
распределена
равномерно на [0,1], тогда генератор
нельзя называть случайным (гипотеза
случайности не выполняется), т.к. выборка
распределена слишком равномерно, но
гипотеза
выполняется.
(попадает
в правый "хвост" распределения)
гипотеза
отвергается.
КОЭФФИЦИЕНТ
КРАМЕРА
- мера связи (см.) двух номинальных
переменных (см.) на основе критерия
хи-квадрат (см.). Применяется к таблицам
сопряженности произвольной размерности.
Вычисляется по формуле:
где χ² - вычисленное по таблице сопряженности значение критерия хи-квадрат;
n- объем выборки;
r- количество строк в таблице;
c- количество столбцов в таблице.
Принимает значения из интервала [0; +1]. При отсутствии статистической связи между переменными значение коэффициента равно 0; при полной связи (когда значение одной переменной полностью определяется значением второй переменной) достигает +1.
Коэффициент взаимной сопряженности Пирсона С также является мерой связи двух признаков, если один из них измерен по шкале наименований и может иметь несколько значений (больше двух), а второй признак измерен по такой же шкале или по шкале порядка, или по шкале интервальной, или по шкале пропорциональной.
Этот коэффициент также рассчитывается с помощью критерия хи-квадрат Пирсона, расчетное значение которого подставляется в формулу:
,
где N
— общий объем выборки.
Таблиц с критическими значениями для коэффициента взаимной сопряженности Пирсона не существует. Поэтому поступают следующим образом:
1. Вычисляют расчетное значение критерия хи-квадрат Пирсона.
2. Сравнивают его с критическим значением критерия хи-квадрат Пирсона для соответствующего числа степеней свободы (см. приложение 1.6).
3. Если χ2расч < χ2табл , то расхождения между распределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет. Делается вывод об отсутствии взаимосвязи. Величину коэффициента С можно в этом случае не вычислять.
4. Если χ2расч ≥ χ2табл , то расхождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.
5. Далее вычисляется значение коэффициента взаимной сопряженности Пирсона, которое и является мерой связи. Чем больше это значение (величина этого коэффициента может быть только положительной и изменяется от 0,00 до +1,00), тем сильнее взаимосвязь.
Коэффициент взаимной сопряженности Чупрова К является мерой связи двух признаков, если один из них измерен по шкале наименований и может иметь несколько значений (больше двух), а второй признак измерен по такой же шкале или по шкале порядка, или по шкале интервальной, или по шкале пропорциональной.
Этот коэффициент рассчитывается с помощью критерия хи-квадрат Пирсона, расчетное значение которого подставляется в формулу:
при k≠m, где k — число градаций одного признака, m — число градаций значений другого признака
при
k=m
Таблиц с критическими значениями для коэффициента взаимной сопряженности Чупрова не существует.
