- •5.Доверительный интервал для генеральной доли.
- •6.Объем выборки, необходимый для оценки генеральной доли.
- •7.Испытание гипотез, процедура испытания гипотез, односторонняя и двусторонняя проверки, статистика.
- •8.Испытание гипотезы на основе выборочной средней при известной генеральной дисперсии.
- •9.Испытание гипотезы на основе выборочной средней при неизвестной генеральной дисперсии.
- •10.Испытание гипотезы на основе выборочной доли.
- •15.Испытание гипотезы по двум выборочным долям.
- •16.Испытание гипотез по спаренным данным (зависимые выборки).
- •17. Непараметрические испытания гипотез. Таблица сопряженности. Критерий Хи-квадрат. Поправка Йетса.
- •18. Простая модель линейной регрессии. Расчет коэффициентов в модели парной линейной регрессии.
- •19. Коэффициент корреляции Пирсона г. Объясненная, необъясненная и общая вариации переменной у. Коэффициент детерминации. Ошибки и остатки.
- •20.Предсказания и прогнозы на основе модели линейной регрессии.
- •21. Основные предпосылки в модели парной линейной регрессии
- •22. Испытание гипотезы для оценки линейности связи на основе оценки коэффициента корреляции в генеральной совокупности.
- •23.Испытание гипотезы для оценки линейности связи на основе оценки показателя наклона линейной регрессии
- •24.Доверительные интервалы в линейном регрессионном анализе. Доверительный интервал для показателя наклона линейной регрессии.
- •26. Доверительный интервал для индивидуальных значений у при заданном значении х.
- •27.Множественная линейная регрессия. Основные предпосылки модели множественной линейной регрессии.
- •28.Расчет коэффициентов множественной линейной регрессии методом наименьших квадратов (мнк).
- •29.Стандартные ошибки коэффициентов в модели множественной линейной регрессии. Стандартная ошибка регрессии.
- •30.Интервальные оценки теоретического уравнения линейной регрессии.
- •31. Проверка статистической значимости коэффициентов уравнения линейной регрессии.
- •32. Проверка общего качества уравнения линейной регрессии. Коэффициент детерминации. Исправленный коэффициент детерминации.
- •33. Проверка равенства двух коэффициентов детерминации.
- •34. Проверка гипотезы о совпадении уравнений регрессии для двух выборок. Тест Чоу.
- •35. Регрессия и Excel.
- •36. Гетероскедастичность, ее последствия. Тест ранговой корреляции Спирмена.
- •37. Тест Голдфелда-Квандта
- •38. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений квадратам значений независимой переменной.
- •39 Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений значениям независимой переменной.
- •41.Критерий Дарбина-Уотсона.
- •42.Мультиколлинеарность и ее последствия. Установление мультикол линеарности. Частные коэффициенты корреляции. Корреляционная матрица. Методы устранения мультиколлинеарности.
- •44.Дисперсионный анализ. Межгрупповая вариация. Внутри групповая вариация. Однофакторный дисперсионный анализ.
- •45.Двухфакторный дисперсионный анализ. Уровни фактора. Двухфакторный дисперсионный анализ без повторений. Двухфакторный дисперсионный анализ с повторениями.
- •46.Временные ряды. Элементы временного ряда (тренд, сезонная вариация, ошибки mad и mse).
- •47. Расчет сезонной вариации в аддитивной модели. Центрированная скользящая средняя.
- •52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
- •53 Прогнозирование в мультипликативной модели
- •54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
- •55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
- •57. Косвенный метод наименьших квадратов
- •58. Методы экспертных оценок. Метод Дельфи. Метод написания сценария. Использование экспертных оценок в аналитической деятельности.
- •59.Анализ временных рядов в Excel.
- •60. Меры связи. Положительная связь. Отрицательная связь. Коэффициент Фехнера (коэффициент корреляции знаков).
- •62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
- •63. Выбор метода прогнозирования.
- •64. Адаптивные методы прогнозирования в экономических исследованиях
- •65. Модели экономического прогнозирования
- •66.Трендовые модели
- •67.Регрессионные модели
- •72 Модель прогнозирования стабильности цен
- •73 Матричные модели прогнозирования
- •74 Модели многомерных классификаций в прогнозных расчетах
- •75 Модель прогнозирования по неполным данным
- •76. Модели сезонных колебаний
- •77)Коэффициент автокорреляции
- •78) Прогноз коэффициентов и показателей в модели динамической регрессии
- •80) Многофакторная регрессионная модель с адаптивным механизмом
- •81Дисперсионное отношение
- •82 Адаптивная многорегрессионная модель
- •83 Расстояние Махаланобиса
- •84 Взвешенное Евклидово расстояние
- •85. Коэффициент ковариации между j и eе показателями
- •86Евклидова метрика
- •87.Модели с аддитивными и мультипликативными составляющими
- •88.Логистическая кривая Перла-Рида
- •89.Кривая Гомпертца
52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
Модель с мультипликативной сезонной составляющей:
yt
= f(t)
S(t)
εt
(обозначения выше)
Полученная в результате повторного осреднения скользящая средняя называется центрированной скользящей средней
53 Прогнозирование в мультипликативной модели
Если временной ряд представляется в виде произведения соответствующих компонент, то полученная модель носит название мультипликативной
;
(обозначения выше)
Модель с мультипликативной сезонной составляющей:
yt = f(t) S(t) εt
54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
Предположим, что модель временного ряда имеет вид:
,
где: a1 =const;
ε1 – случайные неавтокоррелированные отклонения с нулевым математическим ожиданием и дисперсией σ2
Для экспоненциального сглаживания ряда используется рекуррентная формула
,
где St — значение экспоненциальной средней в момент t;
α— параметр сглаживания, α = сonst, 0 < α < 1;
β= 1 – α
55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
Уравнение называют выборочным уравнением регрессии Y на X
Линейный коэффициент корреляции связан с коэффициентом регрессии в виде следующей зависимости:
где
—
коэффициент регрессии,
—
среднеквадратическое
отклонение соответствующего факторного
признака.
Корреляционная таблица один из основных способов описания корреляционных связей между признаками, используемых для упорядочения информации о распределении изучаемой совокупности индивидов по двум признакам
х |
у |
13 |
27 |
15 |
30 |
`ух = φ*(х) - Это уравнение называют выборочным уравнением регрессии; функцию φ*(х) называют выборочной регрессией, а ее график – выборочной линией регрессии.
56.Выборочный коэффициент корреляции. Оценка коэффициента корреляции.
Пусть
–
набор значений двух факторов на выборке
объёма n.
Выборочный коэффициент корреляции (т.е. коэффициент корреляции, определяемый по выборке) равен:
где
Коэффициент корреляции, подсчитанный таким образом, называется коэффициентом корреляции Пирсона.
Оценка корреляционной связи по коэффициенту корреляции
При изучении корреляционной связи важным направлением анализа является оценка степени теснотысвязи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в реальнойдействительности на изменение результативного признака влияют несколько факторов. При этом влияниеодного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменениемусловий в качестве главного, решающего фактора может выступать другой.
57. Косвенный метод наименьших квадратов
Косвенный метод наименьших квадратов используется для получения оценок неизвестных коэффициентов системы одновременных уравнений, удовлетворяющих свойствам эффективности, несмещённости и состоятельности.
Косвенный метод наименьших квадратов применяется только в том случае, если структурная форма системы одновременных уравнений является точно идентифицированной.
Алгоритм метода наименьших квадратов реализуется в три этапа:
1) на основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;
2) приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов;
3) на основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.
