Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по статистики.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
215.04 Кб
Скачать

19. Виды степенных средних величин.

Средние величины делятся на два больших класса: степенные и структурные. К последним относятся мода и медиана, но наиболее часто применяются степенные различных видов.

Степенные средние, в зависимости от представления отдельных величин, могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном порядке. Общая формула простой средней величины имеет вид

=

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы

=

При этом обозначено:

Xi – значения отдельных статистических величин или середин группировочных интервалов;

m - показатель степени, от значения которого зависят следующие виды степенных средних величин:

при m = -1 средняя гармоническая;

при m = 0 средняя геометрическая;

при m = 1 средняя арифметическая;

при m = 2 средняя квадратическая;

при m = 3 средняя кубическая и так далее.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида. Так, приняв m = 1, находим, что простая средняя арифметическая величина определяется по формуле

=

Аналогично для взвешенной средней арифметической величины получаем формулу через частоты или через доли (так как )

=

Не представляет трудностей и вывод формул для простых и взвешенных средних квадратических и кубических величин.

средняя гармоническая величина определяется по формуле

ГМ = ,

Аналогично формула взвешенной средней гармонической величины, которая имеет следующий окончательный вид через частоты или через доли

ГМ =

Наиболее часто употребляются формулы средних арифметических и гармонических величин.

20. Структурные средние величины.

Характеристиками структуры совокупности являются следующие структурные средние:

1. Мода (Mo) – величина признака, наиболее часто встречающаяся в совокупности, т.е. имеющая наибольшую численность в ряду распределения.

а) В дискретном ряду распределения мода определяется  визуально.

б) В интервальном ряду распределения визуально можно определить только интервал, в котором заключена мода, который называется модальным интервалом. Мода будет равна:

2. Медиана (Me) – значение признака, приходящееся на середину ранжированного ряда, т.е. делящее ряд распределения на две равные части.

а) В дискретном ряду распределения определяется номер медианы по формуле:

Номер медианы показывает то значение показателя, которое и является медианой.

б) В интервальном ряду распределения медиана рассчитывается по следующей формуле:

 

21. Показатели вариации.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

К относительным показателям относятся коэффициенты осцилляции, линейного отклонения и вариации.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = Xmax – Xmin.