
- •1.Предмет физиологии растений, физико-химический, экологический и эволюционный аспекты физиологии растений; проблемы и задачи современной физиологии растений.
- •2. Объект физиологии растений, его особенности, разнообразие объектов, характеризующихся фототрофным образом жизни.
- •3. Этапы развития физиологии растений, ее связь с общим развитием биологии и практикой.
- •4. Структурная организация клетки – основа ее биохимической активности и функционирования как целостной живой системы; общий план строения растительной клетки.
- •5. Клеточная стенка, эндоплазматический ретикулюм, аппарат Гольджи растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.
- •6. Цитоплазма, ядро, вакуоль растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.
- •7. Пластиды и митохондрии растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.
- •8. Рибосомы, микротрубочки, микрофиламенты, пероксисомы, лизосомы растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.
- •9. Мембранный принцип организации поверхности протоплазмы и органоидов растительной клетки; биохимическая и функциональная разнокачественность мембран, основные функции мембран.
- •Нуклеиновая кислота→ Фермент → Продукт
- •Нуклеиновая кислота→ Фермент → Продукт
- •12. Источники энергии в биологических системах, понятие макроэргической связи, значение макроэргических соединений в метаболизме живого организма.
- •13. Мембрана как структурная основа биоэнергетических процессов, развитие представлений о механизме сопряжения окислительно-восстановительных реакций с образованием макроэргических соединений.
- •14. История развития учения о фотосинтезе.
- •15. Общее уравнение фотосинтеза, принципиальная схема и физико-химическая сущность фотосинтеза;
- •16. Космическая роль зеленого растения в трансформации вещества и энергии, масштабы фотосинтетической деятельности в биосфере.
- •17. Структурная и биохимическая организация фотосинтетического аппарата, строение листа как органа фотосинтеза; оптические свойства листа.
- •19. Хлорофиллы, химическая структура, химические и физические (спектральные) свойства, биосинтез хлорофилла, функциональное и экологическое значение спектрально-различных форм.
- •21. Каротиноиды, химическое строение, свойства, спектры поглощения, функциональное и экологическое значение.
- •22. Поглощение света пигментами, электронно-возбужденные состояния пигментов (синглетное, триплетное), типы дезактивации возбужденных состояний.
- •28. Фотодыхание и метаболизм гликолевой кислоты; с4-путь фотосинтеза, его особенности и характеристика, метаболизм углерода по типу толстянковых (сам-цикл), их экологическая роль.
- •29. Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности; суточные и сезонные ритмы фотосинтетических процессов.
- •31. Развитие представлений о природе механизмов и путях окислительно-восстановительных превращений в клетке, теория дыхания Палладина, перекисная теория окисления Баха.
- •35. Гликолиз, суть его реакций, энергетика, синтез сахаров при обращении гликолиза; цикл ди- трикарбоновых кислот, характеристика основных стадий цикла.
- •36. Цикл Кребса-Корнберга (глоксилатный цикл); Пентозомонофосфатный путь окисления глюкозы и его р оль в метаболизме клетки.
- •37. Электрон-транспортная цепь дыхания: структурная организация, основные компоненты, их окислительно-восстановительные потенциалы; комплексы переносчиков электронов.
- •38. Окислительное фосфорилирование в электрон-транспортной цепи, энергетическая эффективность, субстратное окислительное фосфорилирование.
- •39. Пять состояний дыхательной цепи переноса электронов (по Чансу). Дыхательный контроль. Сопряженность электронного транспорта с синтезом атф.
- •40. Дыхание в фотосинтезирующей клетке, дыхание целого растения, зависимость дыхания от биологических особенностей растений, его физиологического состояния, возраста, вида ткани.
- •41. Влияние на дыхание внешних факторов (температуры, газового состава среды, интенсивности и качества света и др.), количественные показатели газообмена; потери на дыхание при хранении урожая.
- •42. Функции воды, относительное содержание воды в растении; молекулярная структура и физические свойства воды; свободная и связанная вода, физиологическое значение отдельных фракций воды в растении.
- •Биологические функции воды
- •44. Поступление воды в растение, корневая система как орган поглощения воды; корневое давление, его значение и зависимость от действия внешних факторов.
- •47. Количественные показатели транспирации: интенсивность, продуктивность, транспирационный коэффициент; устьичное и внеустьичное регулирование транспирации.
- •48. Водный баланс растений, влияние на растения недостатка и избытка влаги в почве. Орошение как путь повышения продуктивности растений; его физиологические основы.
- •50. История развития учения о минеральном питании.
- •51. Содержание и необходимость элементов, классификация минеральных элементов, необходимых для растений: макроэлементы, микроэлементы.
- •52. Механизм поглощения ионов, роль процессов диффузии и адсорбции, их характеристика, понятие свободного пространства; транспорт ионов через плазматическую мембрану, роль вакуоли, пиноцитоз.
- •54. Источники азота для растений, использование растением нитратного и аммонийного азота, процесс восстановления в растении окисленных форм азота; пути ассимиляции аммиака в растении,
- •Нитрат нитрит нитроксил гидроксиламин аммоний
- •57. Структурообразовательная роль кальция, формы участия магния в метаболизме; современные представления о роли микроэлементов в метаболизме растений.
- •59. Корневое питание как важнейший фактор управления продуктивностью и качеством урожая сельскохозяйственных растений, классификация удобрений.
- •1. Особенности роста клеток
- •61. Дифференцировка клеток и тканей, процесс детерминации; тотипотентность растительной клетки; экспрессия генома как фактор реализации генетических программ, полярность, ростовые корреляции.
- •62. Явление покоя, его адаптивная функция, типы покоя и факторы его обуславливающие.
- •64. Основные этапы онтогенеза, жизненный цикл растений; термопериодизм, фотопериодизм, фитохромная система, регуляция с участием фитохрома фотопериодической реакции, прерывания покоя, роста листьев.
- •65. Гормональная теория цветения; созревание плодов и семян; процесс старения.
- •66. Границы приспособления и устойчивости, защитно-приспособительные реакции растений, обратимые и необратимые повреждения растений.
- •68. Холодо- и морозоустойчивость, изменения физиологических процессов в тканях при пониженных температурах; закаливание растений, физиологическая природа процесса; зимостойкость растений.
- •70. Влияние на растение избытка влаги (заболоченные, болотные почвы); нарушения обмена веществ растений при переувлажнении; устойчивость к аноксии.
8. Рибосомы, микротрубочки, микрофиламенты, пероксисомы, лизосомы растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.
Рибосомы — это компактные рибонуклеопротеидные частицы, лишенные мембран. Они состоят из белка и особого типа рибонуклеиновой кислоты — рибосомальной (р-РНК). В каждой клетке несколько десятков тысяч рибосом. Они расположены не только в цитоплазме, но и в ядре, в митохондриях, в пластидах. В связи с этим различают два типа рибосом: 80S — цитоплазматические и 70S — локализованные в органеллах. Рибосомы прокариот имеют также коэффициент седиментации 70S (коэффициент седиментации характеризует скорость осаждения частиц при ультрацентрифугировании).
Функцией рибосом является синтез белка. Рибосомы состоят из двух субъединиц: большой и малой. В большую субъединицу входят одна высокомолекулярная РНК и две низкомолекулярные. В малую субъединицу входит одна молекула высокомолекулярной РНК. В состав рибосом входит также несколько десятков разных молекул белка. РНК и белки объединены в рибосомах в нуклеопротеидный тяж. Рибосомальная РНК представляет одинарную цепочку нуклеотидов, однако в результате взаимодействия между отдельными звеньями цепочка частично спирализована. Спирализованные участки составляют примерно 70% от всей длины цепочки, они непостоянны, возникают и разрушаются.
В дифференцированной клетке большинство рибосом прикреплено к поверхности мембран эндоплазматической сети и образует как бы цепочки — полисомы. Это позволяет одновременно синтезировать несколько десятков молекул одного и того же белка.
Лизосомы – это овальной формы органоиды клетки (пузырьки диаметром 1 мкм), окруженные мембраной. В них содержится набор ферментов, которые разрушают белки, нуклеиновые кислоты, углеводы, липиды. Ферменты лизосом (гидролитические) расщепляют принесенные пузырьками вещества.
Мембрана лизосом прочная и затрудняет проникновение собственных ферментов в цитоплазму клетки, но когда лизосома повреждается какими-либо внешними факторами, то разрушается вся клетка или часть ее. Лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке.
В типичной клетке имеется множество митохондрий – органелл, в которых происходит дыхание, а точнее синтез АТФ.
В отличие от пластид и митохондрий, которые ограничены двумя мембранами, микротельца представляют собой сферические органеллы, окруженные одной мембраной. Их диаметр колеблется от 0,5 до 1,5 мкм. Микротельца имеют гранулярное содержимое, иногда в них встречаются и кристаллические белковые включения. Микротельца обычно связаны с одним или двумя участками эндоплазматического ретикулума.
Некоторые микротельца, называемые пероксисомами, играют важную роль в метаболизме гликолевой кислоты, имеющей непосредственное отношение к фотодыханию. в зеленых листьях они связаны с митохондриями и хлоропластами. Другие микротельца, называемые глиоксисомами, содержат ферменты, необходимые для превращения жиров в углеводы, что происходит во многих семенах во время прорастания.
Микрофеламенты вместе с микротрубочками образуют гибкую сеть, называемую цитокселетом.
Микротрубочки – это тонкие цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая из микротрубочек состоит из субъединиц белка, называемого тубулином. Микротрубочки представляют собой динамические структуры, они регулярно разрушаются и образуются вновь на определенных стадиях клеточного цикла.
Функции их разнообразны. В растягивающихся и дифференцирующихся клетках микротрубочки, расположенные около внутренней поверхности плазматической мембраны, по-видимому, участвуют в образовании клеточной оболочки, контролируя упаковку целлюлозных микрофибрилл, которые откладываются цитоплазмой на растущую клеточную оболочку. Направление растяжения клетки определяется ориентацией целлюлозных микрофибрилл в оболочке. Микротрубочки направляют пузырьки диктиосом к формирующейся оболочке, подобно нитям веретена, которые образуются в делящейся клетке, и, вероятно, играют роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки – важный компонент жгутиков и ресничек, в движении которых, по-видимому, играют важную роль.
Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Они представляют собой длинные нити толщиной 5–7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений и играют определенную роль в движении цитоплазмы.