
- •О.И. Ларичев
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Волшебные страны
- •Свапландия (краткая географическая справка)
- •Сложный выбор супругов из Монтландии
- •Лекция 1 основные понятия и определения
- •1. Люди, принимающие решения
- •2. Люди и их роли в процессе принятия решений
- •3. Особая важность проблем индивидуального выбора
- •4. Альтернативы
- •5.Критерии
- •6. Оценки по критериям
- •7. Процесс принятия решений
- •8. Множество Эджворта-Парето
- •Сравнение туров
- •9. Типовые задачи принятия решений
- •10. Пример согласования интересов лпр и активных групп
- •11. Многодисциплинарный характер науки о принятии решений
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Университет Власти в Монтландии
- •Можно ли научить искусству вершить историю?
- •2. Аксиомы рационального поведения
- •3. Задачи с вазами
- •4. Деревья решений
- •5. Парадокс Алле
- •6. Нерациональное поведение. Эвристики и смещения
- •7. Объяснения отклонений от рационального поведения
- •8. Должны ли экономисты принимать во внимание отклонения поведения людей от рационального?
- •9. Теория проспектов
- •10. Теория проспектов и парадокс Алле
- •11. Новые парадоксы
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Компьютерная игра в Университете Власти
- •2. Подход исследования операций
- •3. Появление многокритериальности
- •4. Первые многокритериальные решения: сколько строить ракет?
- •5. Разные типы проблем
- •6. Два пространства
- •7. Многокритериальный анализ экономической политики
- •Значения критериев оценки вариантов экономической политики
- •8. Две трудности для лпр
- •9. Исследование решений на множестве э-п
- •10. Постановка многокритериальной задачи линейного программирования
- •11. Человекомашинные процедуры
- •12. Весовые коэффициенты важности критериев
- •13. Классификация чмп
- •14. Прямые человекомашинные процедуры
- •15. Процедуры оценки векторов
- •16. Процедуры поиска удовлетворительных значений критериев
- •Фаза расчетов
- •Относительные значения критериев
- •Фаза анализа
- •17. Пример применения метода stem: как управлять персоналом
- •Значения критериев при поочередной оптимизации по каждому из них
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Обращение ректора Университета Власти к студентам
- •2. Различные группы задач принятия решений
- •3. Пример
- •4. Многокритериальная теория полезности
- •4.1. Основные этапы подхода maut
- •4.2. Аксиоматическое обоснование
- •Задача выбора дачи для летнего отдыха
- •4.3. Основные теоремы
- •4.4. Построение однокритериальных функций полезности
- •Разброс оценок вариантов постройки аэропорта
- •4.5. Проверка условий независимости
- •4.6. Определение весовых коэффициентов (коэффициентов важности) критериев
- •4.7. Определение полезности альтернатив
- •5. Метод smart - простой метод многокритериальной оценки
- •6. Первый эвристический метод
- •7. Веса критериев
- •8. Как люди назначают веса критериев
- •9. Практическое применение
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Компьютерная генетика
- •2. Структуризация
- •3. Попарные сравнения
- •4. Вычисление коэффициентов важности
- •5. Определение наилучшей альтернативы
- •6. Проверка согласованности суждений лпр
- •7. Система поддержки принятия решений
- •8. Контрпримеры и противоречия
- •Сравнение по критерию c1
- •Сравнение по критерию с2
- •Сравнение по критерию c1
- •9. Мультипликативный метод аналитической иерархии
- •10. Пример практического применения подхода анр
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Подарок студентам Университета Власти
- •2. Два основных этапа
- •3. Свойства бинарных отношений
- •4. Метод electre I
- •Этап разработки индексов
- •Этап исследования множества альтернатив
- •5. Метод electre II Этап разработки индексов
- •Этап исследования множества альтернатив
- •6. Метод electre III Этап разработки индексов
- •Этап исследования альтернатив
- •7. Пример
- •Индексы согласия для примера
- •8. Пример практического применения метода
- •9. Некоторые сопоставления
- •Библиографический список
- •2. Модель памяти
- •3. Кратковременная память
- •3.1. Три этапа переработки информации в кратковременной памяти
- •3.2. Кодирование
- •3.3. Хранение
- •3.4. Магическое число
- •3.5. Денежный насос
- •3.6. Последовательная обработка информации
- •3.7. Извлечение
- •4. Дескриптивные исследования многокритериальных проблем
- •4.1. Прослеживание процесса принятия решений
- •4.2. Результаты дескриптивных исследований
- •5. Долговременная память
- •5.1. Кодирование
- •5.2. Хранение
- •5.3. Извлечение
- •6. Рабочая память
- •7. Психологические теории человеческого поведения при принятии решений
- •7.1. Теория поиска доминантной структуры
- •7.2. Теория конструирования стратегий
- •8. Исследование возможностей человека в задачах классификации многомерных объектов
- •8.1. Схема экспериментов
- •8.2. Параметры, используемые для оценки поведения испытуемых в задачах классификации
- •8.3. Описание экспериментов
- •8.4. Результаты экспериментов
- •Результаты экспериментов по решению задачи классификации многомерных объектов
- •8.5. Обсуждение результатов первой серии экспериментов
- •8.6. Анализ и обсуждение результатов второй серии экспериментов
- •8.7. Общее обсуждение
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •История бюрократии в Монтландии
- •Качественная модель лица, принимающего решения
- •2.1. Черты человеческой системы переработки информации
- •2.2. Особенности поведения человека при принятии решений
- •Какими должны быть методы анализа неструктуризованных проблем
- •4. Измерения
- •4.1. Качественные измерения
- •4.2. Сравнительные качественные оценки
- •5. Построение решающего правила
- •6. Проверка информации лпр на непротиворечивость
- •7. Обучающие процедуры
- •8. Получение объяснений
- •9. Основные характеристики методов вербального анализа решений
- •10. Метод запрос (зАмкнутые процедуры у Опорных Ситуаций)
- •10.1. Постановка задачи
- •10.2. Пример: как оценить проекты?
- •10.3. Выявление предпочтений лпр Единая порядковая шкала для двух критериев
- •Проверка условия независимости для двух критериев
- •Проверка информации лпр на непротиворечивость
- •Частный случай
- •Психологическая корректность процедурывыявления предпочтений лпр
- •10.4. Сравнение альтернатив Сравнение двух альтернатив
- •Упорядочение группы заданных альтернатив
- •10.5. Преимущества метода запрос
- •10.6. Практическое применение метода запрос
- •11. Сравнение трех сппр
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Компьютерные двойники
- •2. Два типа знания
- •3. Время и условия становления эксперта
- •Трансформация системы переработки информации
- •Иерархические структуры хранения знаний
- •6. Черты поведения эксперта
- •Подсознательный характер экспертных знаний
- •8. Трудности получения экспертных знаний
- •9. Экспертные знания в задачах классификации с явными признаками
- •10. Формальная постановка задачи классификации
- •11. Основные идеи метода экспертной классификации
- •11.1. Структуризация проблем
- •11.2. Классификация состояний объекта исследования
- •11.3. Гипотеза о характерности
- •11.4. Проверка информации эксперта и гипотезы о характерности
- •11.5. Определение последовательности состояний для предъявления эксперту в процессе классификации
- •11.6. Трудоемкость построения баз знаний
- •11.7. Проверка качества баз знаний
- •12. Граничные элементы классификации
- •13. Решающие правила экспертов
- •14. Система диагностики заболеваний группы «Острый живот», построенная на основе метода экспертной классификации
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Компьютеры на страже безопасности
- •Лекция 10 анализ риска
- •1. Типы риска
- •2. Особая сложность задач анализа риска
- •3. Направления исследований
- •4. Измерение риска
- •4.1. Инженерный подход
- •4.2. Модельный подход
- •4.3. Восприятие риска
- •Коллективная результирующая ранжировка и оценка согласованности при вынесении суждений о риске
- •4.4. Сопоставление разных способов измерения риска
- •5. Установление стандартов
- •6. Человекомашинное взаимодействие
- •Риск катастрофических событий как независимый критерий
- •8. Распределения «с тяжелыми хвостами»
- •9. Аварии и их анализ
- •10. Управление риском
- •11. Практический пример: выбор месторасположения нового объекта с учетом факторов риска
- •11.1. Конкретная задача: альтернативы
- •11.2. Активные группы
- •11.3. Критерии
- •11.4. Особенности задачи выбора с точки зрения теории принятия решений
- •11.5. Анализ вариантов
- •11.6. Конструирование нового варианта
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Компьютерная демократия Монтландии
- •Лекция 11 коллективные решения
- •1. Парадокс Кондорсе
- •2. Правило большинства голосов
- •3. Метод Борда
- •4. Аксиомы Эрроу
- •5. Попытки пересмотра аксиом
- •6. Теорема невозможности и реальная жизнь
- •Принятие коллективных решений в малых группах
- •Организация и проведение конференций по принятию решений
- •9. Метод организации работы гпр
- •9.1. Предварительные этапы
- •9.2. Анализ собранной информации
- •Проведение конференции по принятию решений
- •9.4. Практический пример
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Военный переворот в Свапландии
- •К событиям в Свапландии
- •2. Постановка многокритериальной задачи о назначениях
- •2.1. Содержательная постановка задачи
- •2.2. Критерий оптимальности решения мзн
- •2.3. Формальная постановка задачи
- •3. Пример
- •4. Различные типы задач о назначениях
- •5. Основные алгоритмы решения многокритериальной задачи о назначениях
- •5.1. Различные индексы соответствия
- •5.2. Поиск решения многокритериальной задачи о назначениях
- •6. Этап анализа данных и проверки существования идеального решения
- •7. Формирование области допустимых решений
- •8. Выявление предпочтений лпр
- •8.1. Статистические оценки сложности задач выявления предпочтений лпр
- •8.2. Основная процедура выявления предпочтений лпр
- •8.3. Выявление предпочтений лпр; вспомогательная процедура
- •Поиск окончательного решения многокритериальной задачи о назначениях
- •9.1. Поиск решения мзн типа а
- •9.2. Поиск решения мзн типа в
- •9.3. Поиск решения мзн типа с
- •9.4. Поиск решения мзн типа d
- •10. Практическое применение
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Стратегия правления в Свапландии
- •Прыжок в никуда
- •Лекция 13 принятие решений в организациях
- •1. Личные и деловые решения
- •2. Модель ограниченной рациональности
- •3. Эскалация решений
- •4. Тактические и стратегические решения
- •5. Модель «игра влияний» в руководстве организации
- •6. Модель обеспечения профессионального качества подготовки решений
- •7. Голографическая модель организации
- •8. Государственные или частные организации: что эффективнее?
- •9. Централизация в принятии решений: попытка административной революции
- •10. Система «ринго»
- •11. Планирование выполнения решений
- •12. Виртуальные организации
- •13. Управление знаниями в организациях
- •14. Метод милс (Многоуровневые Информационно-Логические Структуры)
- •15. Таблицы решений
- •Библиографический список
- •Контрольное задание
- •Волшебные страны
- •Желтый, бурый, зеленый
- •2. Консультанты и консультативные фирмы
- •3. Некоторые характерные черты деятельности консультативных фирм
- •3.1. Внимание к нуждам заказчика
- •3.2. Конфиденциальный характер результатов работы
- •3.3. Независимость от заказчика
- •3.4. Высокая квалификация консультантов
- •3.5. Совместная работа с заказчиком
- •4. Примеры практических задач
- •4.1. Планирование развития городов
- •4.2. Календарное планирование работы полиграфического предприятия
- •5. Роли лпр и консультанта
- •6. Моральные критерии в деятельности лпр и консультанта
- •7. Методы принятия решений и искусство их применения
- •Библиографический список
- •Контрольное задание
- •Содержание
- •105318, Москва, Измайловское ш., 4
- •432980, Г. Ульяновск, ул. Гончарова, 14
4. Деревья решений
Приведенная выше табл. 2.1 может быть представлена в виде дерева решений (рис. 2.3).
Рис. 2.3. Дерево решений
На этом дереве квадратик означает место, где решение принимает человек, а светлый кружок — место, где все решает случай. На ветвях дерева написаны уже знакомые нам значения вероятностей, а справа у конечных ветвей — значения исходов (результаты).
Для чего нужно дерево решений? Мы можем использовать его для представления своих возможных действий и для нахождения последовательности правильных решений, ведущих к максимальной ожидаемой полезности. Чтобы показать это, усложним задачу. Пусть в вазе 1-го типа содержится 6 красных и 4 черных шара. В вазе второго типа содержится 3 красных и 7 черных шаров. Предоставим человеку, выбирающему между действиями d1 и d2, дополнительные возможности. Пусть он может до своего ответа вытащить за определенную плату один шар из вазы, причем после вытаскивания шар кладется обратно в вазу. Плата за вытаскивание одного шара равна 60 д. е.
Дерево решений с двумя его основными ветвями представлено на рис. 2.4. Вот теперь вопрос о том, какое решение следует принимать, стал сложнее: необходимо решить, стоит ли вынимать шар и какой ответ дать после вытаскивания красного или черного шара. При принятии этих решений нам окажет существенную помощь известный в теории вероятностей [4] (и в теории статистических решений) способ подсчета изменения вероятностей событий после получения дополнительной информации.
Рис. 2.4. Дерево решений
Вернемся к описанию задачи. Вероятность вытащить красный шар из вазы 1-го типа pK(B1) = 0,6, а из вазы 2-го типа pK(В2) = 0,3. Зная все условные вероятности (зависящие от условия), а также вероятности p1 и p2 выбора ваз 1-го и 2-го типа (см. табл. 2.1), мы можем поставить следующие вопросы.
Первый вопрос: каковы вероятности вытащить красный и черный шары? Для ответа на этот вопрос произведем простые вычисления. Вероятность вытащить красный шар: pK(B1) = 0,7Ä0,6 = 0,42, если ваза окажется 1-го типа, рк(В2) = 0,3 Ä0,3 = 0,09, если ваза окажется 2-го типа. Следовательно, вероятность вытащить красный шар в общем случае рк = 0,51. Аналогичным образом можно посчитать, что вероятность вытащить черный шар рч = 0,49.
Второй вопрос более сложный. Пусть вытащенный шар оказался красным (черным). Какое действие следует выбрать: d1 или d2? Для ответа на этот вопрос нужно знать вероятности принадлежности ваз к 1-му и 2-му типам после получения дополнительной информации. Эти вероятности позволяет определить знаменитая формула Байеса [4].
Например, мы вытащили красный шар. Какова после этого вероятность того, что перед нами стоит ваза 1-го типа?
Приведем все обозначения вероятностей:
pK(B1) — вероятность вытащить красный шар из вазы 1-го типа;
pЧ(B1) - вероятность вытащить черный шар из вазы 1-го типа;
pK(В2) — вероятность вытащить красный шар из вазы 2-го типа;
pЧ(В2) — вероятность вытащить черный шар из вазы 2-го типа;
p(B1) — вероятность того, что ваза окажется 1-го типа;
р(В2) — вероятность того, что ваза окажется 2-го типа;
p(B1/K) — вероятность того, что ваза окажется 1-го типа после вытаскивания красного шара;
pЧ(B1/Ч) - вероятность того, что ваза окажется 1-го типа после вытаскивания черного шара;
р(В2/к) — вероятность того, что ваза окажется 2-го типа после вытаскивания красного шара;
р(В2/ч) — вероятность того, что ваза окажется 2-го типа после вытаскивания черного шара.
Формула Байеса позволяет оценить p(Bi/K) и p(Bi/Ч), где 1 = 1, 2, используя все прочие вероятности. Например:
Для нашей задачи: p(B1/K) = 0,82; p(B1/Ч) = 0,57; p(B2/K) = 0,18; р(В2/ч) = 0,43.
Теперь мы имеем всю информацию, необходимую для принятия решений.
На рис. 2.4 показаны две основные ветви дерева решений, причем верхняя просто повторяет дерево решений на рис. 2.3. Квадратик 1 слева соответствует первому решению — вытаскивать шар или нет. Случаю отказа от вытаскивания шара соответствует верхняя основная ветвь. Решению вытаскивать шар соответствует нижняя ветвь, начинающаяся со случайного события (кружок). В квадратиках 2, 3, 4 принимаются решения о выборе одной из двух стратегий: di или d2. Далее все решает случай (кружки).
Есть три простых правила выбора оптимальной (по критерию максимума ожидаемой полезности) последовательности решений на основе дерева решений:
1) идти от конечных ветвей дерева к его корню;
2) там, где есть случайность (кружок), находится среднее значение;
3) там, где есть этап принятия решений (квадратик), выбирается ветвь с наибольшей ожидаемой полезностью, а другая отсекается двумя черточками.
Применим эти правила к дереву решений, представленному на рис. 2.4. В результате получим дерево решений, показанное на рис. 2.5.
Рис. 2.5. «Сворачивание» дерева решений
На этом рисунке над кружками указаны средние значения полезности, двумя черточками отсечены ветви с меньшим значением ожидаемой полезности. Наилучший вариант действий: шар не вытаскивать и выбирать действие d1. Этот вариант соответствует самому верхнему пути дерева решений на рис. 2.5. Такая процедура нахождения оптимального пути на деревьях решений получила название «сворачивание» дерева решений.
Деревья решений при заданных числовых значениях вероятностей и исходов позволяют осуществить выбор той стратегии (последовательности действий), при которой достигается наибольший выигрыш, т.е. достигается максимум функции полезности ЛПР.