- •Содержание
- •6. Колебания и волны
- •6.1. Механические колебания и волны
- •6.1.1. Колебания
- •6.1.1.1. Условия возникновения колебаний
- •6.1.1.2. Собственные, свободные и вынужденные колебания
- •6.1.1.3. Параметры колебания
- •6.1.1.4. Гармонические колебания
- •6.1.1.5. Гармонические колебания под действием силы упругости
- •6.1.1.5.1. Превращение энергии при упругих колебаниях
- •6.1.1.6. Сложение гармонических колебаний одного направления и одной частоты
- •6.1.1.7. Математический и физический маятники
- •6.1.1.7.1. Период колебаний математического маятника
- •6.1.1.8. Резонанс
- •6.1.2. Распространение колебаний в упругой среде. Волна
- •6.1.2.1. Поперечные и продольные волны
- •6.1.2.2. Параметры волны
- •6.1.2.3. Принцип Гюйгенса
- •6.1.2.4. Отражение волн
- •6.1.2.5. Преломление волн
- •6.1.2.6. Интерференция волн
- •6.1.2.7. Дифракция волн
- •6.1.2.8. Поляризация волн
- •6.1.2.9. Звуковые волны
- •6.1.2.9.1. Параметры звука
- •6.2. Электромагнитные колебания и волны
- •6.2.1. Общие положения
- •6.2.2. Электромагнитные колебания в контуре
- •6.2.2.1. Сопоставление механических и электромагнитных колебаний
- •6.2.2.2. Уравнение собственных электромагнитных колебаний
- •6.2.2.3. Собственная частота колебаний в контуре. Формула Томсона
- •6.2.2.4. Затухающие колебания
- •6.2.3. Переменный электрический ток
- •6.2.3.1. Понятие о переменном токе
- •6.2.3.2. Резистор в цепи переменного тока
- •6.2.3.3. Емкость в цепи переменного тока
- •6.2.3.4. Индуктивность в цепи переменного тока
- •6.2.3.5. Действующие значения мощности, силы и напряжения переменного тока
- •6.2.3.6. Закон Ома для переменного тока
- •6.2.3.7. Резонанс в цепи переменного тока
- •6.2.4. Автоколебания
- •6.2.4.1. Автоколебательная система
- •6.2.4.2. Генератор автоколебаний на транзисторе
- •6.2.5. Электрическая энергия
- •6.2.5.1. Получение электрической энергии
- •6.2.5.2. Генератор переменного тока (гпт)
- •6.2.5.3. Преобразование переменного тока. Трансформатор
- •6.2.5.4. Передача и потребление электроэнергии
- •6.2.5.5. Токи высокой частоты и их применение
- •6.2.6. Электромагнитные волны (эмв)
- •6.2.6.1. Электромагнитное поле и его распространение в пространстве в виде эмв
- •6.2.6.2. Открытый колебательный контур как источник эмв
- •6.2.6.3. Опыты Герца. Экспериментальное обнаружение эмв
- •6.2.6.4. Свойства эмв
- •6.2.6.5. Скорость распространения эмв. Длина эмв в различных средах
- •6.2.6.6. Энергия эмв
- •6.2.7. Основы радиосвязи
- •6.2.7.1. Изобретение радио
- •6.2.7.2. Принципы радиосвязи
- •6.2.7.3. Телевидение
- •6.2.7.4. Понятие о радиолокации
- •6.2.7.5. Распространение радиоволн
- •6.2.7.6. Космическое радиоизлучение
- •7. Оптика
- •7.1. Что такое оптика?
- •7.1.1. Определение скорости света
- •7.2. Развитие представлений о природе света
- •7.2.1. Электромагнитная природа света
- •7.3. Геометрическая оптика
- •7.3.1. Длина световой волны в различных средах
- •7.3.2. Отражение и преломление света
- •7.3.3. Показатель преломления
- •7.3.4. Полное отражение света
- •7.3.5. Тонкие линзы
- •7.4. Волновая оптика
- •7.4.1. Дисперсия света
- •7.4.2. Цвета тел
- •7.4.3. Связь цвета с частотой волны
- •7.4.4. Интерференция света
- •7.4.5. Интерференция в клиновидной плёнке. Определение длины световой волны
- •7.4.6. Интерференция в линзе. Кольца Ньютона
- •7.4.7. Применение интерференции
- •7.4.8. Дифракция света
- •7.4.9. Зоны Френеля
- •7.4.10. Дифракция на щели в параллельных лучах
- •7.4.11. Дифракционная решётка
- •7.4.12. Дифракционный спектр
- •7.4.13. Голография
- •7.4.14. Поляризация света
- •7.4.15. Закон Брюстера
- •7.4.16. Двойное лучепреломление
- •7.4.17. Призма Николя
- •7.4.18. Поляроиды
- •7.5. Излучение и спектры
- •7.5.1. Источники света
- •7.5.2. Спектроскоп
- •7.5.3. Спектры испускания
- •7.5.4. Спектры поглощения. Закон Кирхгофа
- •7.5.5. Спектральный анализ
- •7.5.6. Линии Фраунгофера
- •7.5.7. Эффект Доплера–Физо
- •7.5.8. Инфракрасное излучение
- •7.5.9. Ультрафиолетовое излучение
- •7.5.10. Рентгеновское излучение
- •7.5.11. Шкала электромагнитных волн
- •7.5.12. Чёрное тело. Закон теплового излучения Кирхгофа
- •7.5.13. Распределение энергии в спектре. Законы Стефана–Больцмана и Вина
- •7.5.14. Ультрафиолетовая катастрофа
- •7.5.15. Спектральные классы звёзд
- •7.6. Фотометрия
- •7.6.1. Основные понятия и определения Точечный источник света
- •Лучистый поток
- •Телесный угол
- •Световой поток
- •Спектральная чувствительность глаза
- •Сила света
- •Освещенность
- •7.6.2. Законы освещенности
- •7.6.3. Яркость и светимость
- •7.6.4. Видимая звездная величина
- •7.6.5. Светимость звёзд
- •7.6.6. Абсолютная звёздная величина
- •7.7. Основы теории относительности
- •7.7.1. Классические представления о пространстве и времени
- •7.7.2. Предпосылки возникновения теории относительности
- •7.7.3. Постулаты теории относительности
- •7.7.4. Относительность одновременности
- •7.7.5. Зависимость временных промежутков от движения
- •7.7.6. Зависимость пространственных промежутков от движения
- •7.7.7. Преобразования Лоренца
- •7.7.8. Некоторые понятия релятивистской динамики Масса
- •Импульс
- •7.7.9. Связь между массой и энергией
- •7.8. Квантовая оптика
- •7.8.1. Фотоны
- •7.8.2. Внешний фотоэффект
- •7.8.2.1. Законы внешнего фотоэффекта
- •7.8.2.2. Теория внешнего фотоэффекта
- •7.8.2.3. Применение внешнего фотоэффекта
- •7.8.3. Внутренний фотоэффект и его применение
- •7.8.4. Эффект Комптона
- •7.8.5. Давление света. Опыт Лебедева
- •7.8.6. Химическое действие света
- •7.8.7. Фотография
- •7.8.8. Корпускулярно-волновой дуализм
- •8. Физика атома и атомного ядра
- •8.1. Развитие представлений о природе атома
- •8.1.1. Модель Томсона
- •8.1.2. Опыт Резерфорда. Планетарная модель атома
- •8.2. Излучение атома водорода
- •8.2.1. Постулаты Бора
- •8.2.2. Квантовый генератор
- •8.3. Приборы для регистрации заряженных частиц
- •8.3.1. Газоразрядный счётчик Гейгера
- •8.3.2. Камера Вильсона
- •8.3.3. Пузырьковая камера
- •8.3.4. Метод толстослойных фотоэмульсий
- •8.4. Радиоактивность
- •8.4.1. Состав радиоактивного излучения
- •8.4.2. Свойства , , -излучений
- •8.4.3. Радиоактивные превращения
- •8.4.4. Закон радиоактивного распада
- •8.4.5. Изотопы
- •8.4.6. Получение радиоактивных изотопов и их применение
- •8.4.7. Биологическое действие радиоактивных излучений
- •8.5. Искусственное превращение ядер
- •8.5.1. Открытие нейтрона
- •8.5.2. Протонно-нейтронная модель ядра
- •8.5.3. Ядерные силы
- •8.5.4. Энергия связи. Дефект масс
- •8.6. Ядерные реакции
- •8.6.1. Деление ядер урана
- •8.6.2. Цепная ядерная реакция
- •8.6.3. Ядерный реактор
- •8.6.4. Термоядерная реакция. Баланс энергии
- •8.6.5. Применение ядерной энергии
- •8.7. Элементарные частицы
- •8.7.1. Открытие позитрона. Античастицы
- •8.7.2. Понятие о классификации частиц
- •8.7.3. Кварки
- •8.7.4. Типы взаимодействий частиц
- •8.7.5. Взаимные превращения вещества и поля
- •8.8. Космическое излучение
- •8.8.1. Радиационный пояс Земли
- •9. Звёзды и Вселенная
- •9.1. Общие сведения
- •9.1.1. Солнечная система
- •9.1.2. Строение Солнца и звёзд
- •9.1.3. Ядро как термоядерный реактор
- •9.1.4. Наша звёздная система – Галактика
- •9.1.5. Другие галактики
- •9.1.6. Квазары
- •9.1.7. Бесконечность Вселенной
- •9.1.8. Космология. Закон Хаббла
- •9.2. Возникновение и эволюция небесных тел
- •9.2.2. Планеты
- •9.2.3. Галактики
- •9.2.4. Вселенная. Реликтовое излучение
- •9.3. Научная картина мира
- •10. Литература
- •11. Приложения Сокращения
- •Обозначения
- •Список определяемых понятий
- •1. Механика
- •2. Молекулярная физика
- •3. Термодинамика
- •4. Агрегатные состояния веществ
- •5. Электромагнетизм
- •6. Колебания и волны
- •7. Оптика
- •8. Физика атома и атомного ядра
- •9. Звёзды и Вселенная
- •Милов Юрий Евгеньевич Харейн Марк Лазарович
6.1.2.2. Параметры волны
Фазовая скорость (v) – скорость распространения фазы колебаний.
Колебания точечного источника в однородной изотропной среде распространяются во все стороны с одинаковой скоростью, а точки, равноотстоящие от источника, колеблются в одинаковых фазах и образуют расходящиеся сферические волновые поверхности.
Волновая поверхность – поверхность, все точки которой колеблются в одинаковой фазе.
Фронт волны – волновая поверхность, наиболее удалённая от источника (поверхность, отделяющая возмущённую область пространства от невозмущённой).
Плоская волна – волна с плоским волновым фронтом.
Сферическая волна – волна со сферическим волновым фронтом.
Фронт волны перемещается с фазовой скоростью.
Луч – линия, направленная от источника волны перпендикулярно её фронту.
а) Продольная волна б) Поперечная волна
Из опытов известно, что за время, равное периоду колебаний Т, фронт (фаза) волны перемещается по лучу на расстояние, равное длине волны .
Скорость распространения волны
или
Из опытов известно, что волны, возбуждаемые одним и тем же источником (Т = const) в разных средах имеют разную фазовую скорость. Тогда из = vT следует, что при переходе волны из одной среды в другую её длина меняется. Установлено также, что в широком диапазоне частот скорость распространения волн зависит только от свойств среды, т. е. в однородной изотропной среде волны разной частоты имеют одинаковую фазовую скорость.
Следовательно (из = vT при v = const), волны можно характеризовать как частотой (периодом), так и длиной.
6.1.2.3. Принцип Гюйгенса
Пусть
в однородной изотропной среде от
точечного источника т.О распространяется
сферическая волна и в момент времени t
фронт волны находился в положении 1, а
через время t
– в положении 2. Распространение фронта
волны объясняет принцип Гюйгенса:
каждая точка фронта волны становится
источником вторичных волн, огибающая
которых есть новое положение фронта
волны (при этом полагают, что вторичные
волны переносят энергию только в
направлении луча – от источника).
Тогда другое определение луча:
Луч – линия распространения энергии.
6.1.2.4. Отражение волн
Падающий луч – луч, движущийся в среде до границы раздела двух сред.
Отражённый луч – луч, движущийся от границы раздела двух сред в среде распространения падающего луча.
Отражение – явление образования отражённого луча.
Угол падения (отражения) – угол между падающим (отражённым) лучом и перпендикуляром к границе раздела сред в точке падения (отражения) луча.
Пусть плоская волна (фронт АС), ограниченная
лучами А1 и В1, падает на
поверхность MN раздела
двух сред под углом
и отражается от неё под углом
Луч А1 достигнет т.А раньше, чем
луч В1 достигнет т.В, и, пока луч
В1 проходит расстояние СВ
отражённый луч А2 пройдёт расстояние
АD.
Фронт отражённой волны DB
перпендикулярен лучу A2,
поэтому треугольники АСВ и ADB
равны. Значит, DAB
= ABC
и
.
Тогда получаем законы отражения:
1) первый закон отражения: падающий луч, отражённый луч и перпендикуляр к границе раздела сред, восстановленный в точке падения луча, лежат в одной плоскости;
2) второй закон отражения: угол отражения равен углу падения .
Из законов отражения следует, что падающий и отражённый лучи обратимы: если падающий направить по линии отражённого, то отражённый пойдёт по линии падающего.
