Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Расчет транзистора-ШАБЛОН.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
195.54 Кб
Скачать

Практическая работа №2. Проектирование и расчёт биполярного транзистора.

План практической работы

  1. Общий расчёт структура биполярного транзистора.

  2. Выбор концентрации примеси в эпитаксиальном слое коллектора.

  3. Расчёт профиля легирования.

  4. Расчёт удельных поверхностных сопротивлений базового и эмиттерного слоёв.

  5. Контрольные задания.

Общий расчёт структуры биполярного транзистора.

Для расчёта всей структуры биполярного транзистора, изображённой на рис. 2.1., необходимы следующие исходные данные для расчета: глубина коллекторного перехода и концентрация примеси на поверхности пассивной базы.

  1. Структура биполярного транзистора.

Расчет выполняют в такой последовательности:

  1. По заданному максимально допустимому напряжению определяют пробивное напряжение , которое должно быть хотя бы на 20% больше , т.е. . Пробивное напряжение коллекторного p-n-перехода выбирают с коэффициентом запаса 2…3.

По графику зависимости (рис. 2.2.), где – концентрация примесей на высокоомной стороне p-n-перехода, находят . Удельное сопротивление коллекторного перехода при рассчитывают по формуле:

Подвижности при заданной концентрации примесей находят из рис. 2.3.

  1. График зависимости пробивного напряжения от концентрации носителей.

  1. Зависимости подвижности носителей от концентрации примесей в полупроводнике.

  1. Определяют характеристическую длину в распределении примесей акцепторов и характеристическую длину в распределении доноров :

  2. Для расчёта ширины объёмного заряда на коллекторном и эмиттерном переходах предварительно вычисляют потенциал:

контактную разность потенциалов на коллекторном переходе:

где – тепловой потенциал, равный 0,026 В при ; - концентрация собственных носителей заряда в кремнии ( ).

Контактная разность потенциалов на эмиттерном переходе определяется аналогично .

  1. Рассчитывают ширину области объёмного заряда, распространяющуюся в сторону базы и в сторону коллектора при максимальном смещении коллекторного перехода :

  2. Выбирают ширину технологической базы, которая должна быть больше ширины слоя объемного заряда на коллекторном переходе , так как последний будет иметь максимальную ширину при :

  3. Ширину высокоомного коллектора под коллекторным переходом выбирают больше ширины слоя объемного заряда на коллекторном переходе, распространяющейся в сторону коллектора при максимальном обратном смещении: . Полная толщина коллекторного слоя

  4. Определяют концентрацию акцепторов на эмиттерном переходе:

  5. В результате высокой степени легирования эмиттера область объёмного заряда на эмиттерном переходе в основном будет сосредоточена в базе. Приближённо можно считать, что , где:

Ширина базы была определена без учета и может оказаться заниженной; в свою очередь, величина тоже может быть меньше действительной, а ширина объемного заряда – больше. Однако превышение незначительно и приведет только к тому, что технологическая ширина базы будет выбрана с некоторым запасом.

  1. Корректируют технологическую базу:

  2. Для определения размеров активной базы рассчитывают ширину области объемного заряда и при прямом смещении эмиттерного и обратном смещении коллекторного переходов.

  3. Определяют активную ширину базы:

  4. Находят размеры коллекторов, имеющего квадратную форму со стороной:

где – площадь коллектора, которую рассчитывают по известной емкости коллекторного перехода при заданном смещении , принимая емкость коллектора :

  1. Площадь эмиттера можно определить исходя из допустимой плотности тока эмиттера , при которой коллекторный переход находится при нулевом смещении, когда транзистор еще не вошел в режим насыщения:

где

Минимальное напряжение на участке эмиттер-коллектор транзистора рассчитывают по максимальной мощности на p-n переходе и максимальному току коллектора :

Размеры остальных областей транзистора, а также его общая площадь могут быть определены исходя из известной площади эмиттера , минимальной ширины контактов, минимального расстояния между контактами и других конструктивно технологических ограничений, принятых для данной технологии изготовления полупроводниковой ИМС.

Для определённого типа микросхем применяют и другие конструкции интегральных транзисторных структур. В логических микросхемах широко используется многоэмиттерный транзистор (МЭТ), типовая структцра которого приведена на рис. 2.4.