
- •Introduction
- •1.Property of Irshansk`s soil
- •Generalized Influence of Soil Separates on Some properties of Soils
- •Texture
- •Soil types by clay, silt and sand composition
- •Structure
- •Soil water
- •Density
- •Representative bulk densities of soils
- •Porosity
- •Consistency
- •Temperature
- •Thermal Conductivity
- •In general, color is determined by the organic matter content, drainage conditions, and degree of oxidation. Soil color, while easily discerned, has little use in predicting soil characteristics.
Soil water
Water affects soil formation, structure, stability and erosion but is of primary concern with respect to plant growth. Water is essential to plants for four reasons:
It constitutes 80%-95% of the plant's protoplasm.
It is essential for photosynthesis.
It is the solvent in which nutrients are carried to, into and throughout the plant.
It provides the turgidity by which the plant keeps itself in proper position.
In addition, water alters the soil profile by dissolving and re-depositing minerals, often at lower levels, and possibly leaving the soil sterile in the case of extreme rainfall and drainage. In a loam soil, solids constitute half the volume, gas one-quarter of the volume, and water one-quarter of the volume of which only half will be available to most plants.
A flooded field will drain the gravitational water under the influence of gravity until water's adhesive and cohesive forces resist further drainage at which point it has finally reached field capacity. At that point, plants must apply suction to draw water from a soil. When soil becomes too dry, the available water is used up and the remaining moisture is unavailable water as the plant cannot produce sufficient suction to draw the water in. A plant must produce suction that increases from zero for a flooded field to 1/3 bar at field dry condition. At 15 bar suction, wilting percent, seeds will not germinate, plants begin to wilt and then die. Water moves in soil under the influence of gravity, osmosis and capillarity. When water enters the soil, it displaces air from some of the pores, since air content of a soil is inversely related to its water content.
The rate at which a soil can absorb water depends on the soil and its other conditions. As a plant grows, its roots remove water from the largest pores first. Soon the larger pores hold only air, and the remaining water is found only in the intermediate- and smallest-sized pores. The water in the smallest pores is so strongly held on particle surfaces that plant roots cannot pull it away. Consequently, not all soil water is available to plants. When saturated, the soil may lose nutrients as the water drains. Water moves in a drained field under the influence of pressure where the soil is locally saturated and by capillarity pull. Most plant water needs are supplied from the suction caused by of evaporation from plant leaves and 10% is supplied by "suction" created by osmotic pressure differences between the plant interior and the soil water. Plant roots must seek out water. Insufficient water will damage the yield of a crop. Most of the available water is used in transpiration to pull nutrients into the plant.
Density
Density is the weight per unit volume of an object. Particle density is equal to the mass of solid particles divided by the volume of solid particles - it is the density of only the mineral particles that make up a soil; i.e., it excludes pore space and organic material. Soil particle density is typically 2.60 to 2.75 grams per cm3 and is usually unchanging for a given soil.t. Soil bulk density is equal to the dry mass of the soil divided by the volume of the soil; i.e., it includes air space and organic materials of the soil volume. A high bulk density is indicative of either soil compaction or high sand content. The bulk density of cultivated loam is about 1.1 to 1.4 g/cm3 (for comparison water is 1.0 g/cm3).Soil bulk density is highly variable for a given soil. A lower bulk density by itself does not indicate suitability for plant growth due to the influence of soil texture and structure.