- •50. Переваривание белков в жкт
- •51. Протеолиз белков в клетках: роль лизосом и протеосом. Реакции трансаминирования и дезаминирования.
- •52. Заменимые и незаменимые аминокислоты. Гликогенные и кетогенные аминокислоты. Пути вхождения углеродных скелетов аминокислот в цикл Кребса
- •59.Метаболизм треонина, триптофана и лизина. Катоболизм треонина, биоэнергетика процесса.
- •60. Обеззвреживание аммиака: временное и окончательное. Орнитиновый цикл.
- •Орнитиновый цикл мочевинообразования
- •61. Наследственные патологии обмена аминокислот.
- •62. Обмен хромопротеидов: распад гема. Обтурационная, паренхиматозная и гемолитическая желтуха. Порфирии.
- •63. Обмен нуклеопротеидов: распад пуринов и синтез пиримидинов
- •64. Этапы реализации наследственной информации: репликация, транскрипция, трансляция.
- •65.Трансляция (биосинтез белка)
- •66.Кровь: состав, функция, особенности метаболизма в эритроцитах и лейкоцитах, белки крови.
- •67.Свертывание крови, внешний и внутренние пути.
- •68. Биохимия крови. Молекулярные аспекты газообмена в легких и тканях.
- •69.Буферные системы крови. Нарушения кислотно-основного обмена.
- •70.Биохимия крови. Патологические изменения в составе крови, методы выявления. Использование анализа крови в диагностических целях.
- •71. Распределение в организме и участие в биохимических реакциях: натрия, калия, кальция, магния, кобальта, железа, цинка, фосфора, хлора, фтора
- •72. Биохимия почки: образование мочи в нефронах (ультрафильтрация, реобсорбция, и секреция), состав мочи в норме и при патологии. Аквапорины почки.
- •Показатели химического состава мочи
- •74.Неэкскреторные функции почки: синтез ренина, эритропоэтина, кальцитриола, органических осмолитов и роль этих соединений в организме.
- •75.Регуляция водно-солевого обмена.
- •76. Обмен углеводов, липидов и белков в почке, отличительные черты, значение для почки и организма.
- •77.Патологические компоненты мочи.
- •78. Гормоны поджелудочной железы. Биохимия сахарного диабета
- •79.Гормоны щитовидной железы. Гипо- и гипертиреозы, механизмы возникновения и последствия.
- •80. Гормоны мозгового слоя надпочечников: синтез влияние на обмен веществ, типы рецепторов, физиологические реакции.
- •81. Гормоны коркового слоя надпочечников.
- •82. Обмен веществ в нервной ткани: особенности углеводного, белкового, липидного и нуклеинового обмена.
- •84. Биохимия нервной ткани. Липидный состав нейронов. Биосинтез галактопереброзидов и их роль в нейронах.
- •85.Регуляция обмена кальция и фосфатов. Роль паратгормона и кальцитонина. Синтез кальцийтриола и участие в обмене кальция и фосфора. Гипо- и гиперкальциемия, причины возникновения, следствия.
- •1.Синтез кальцитриола
- •2. Механизм действия кальцитриола
- •87. Структура и функция коллагена, типы коллагенов. Синтез проколлагена с последующим процессингом в тропоколлаген, формирование фибрилл.
- •88. Роль витамина с и проколлагеновых пептидаз в процессинге проколлагена. Образование аллизина и оксиаллизина и их участие в формировании структуры коллагена.
- •89. Биохимия костной ткани. Клетки костной ткани и их участие в построении и резорбции кости. Особенности метаболизма в остеобластах и остеокластах.
- •90. Органические и неорганические компоненты костей. Минерализация и деминерализация костей, и регуляция этих поцессов гормонами.
- •91. Строение зуба и его химический состав. Роль изоморфного замещения в поддержании высокой механической плотности эмали зубов. Особенности белкового состава эмали, дентина и цемента.
- •92. Роль витаминов д и с в метаболизме костной ткани. Регуляторные эффекты гормона роста, паратгормона, кальцитонина и стероидных гормонов.
- •93. Биохимия слюнообразования, факторы регуляции состава, свойств и количества слюны, ее органические и неорганические компоненты.
- •94.Минерализация, деминерализация и реминерализация эмали, участие в этом процессе слюны. Состав и функция ротовой жидкости.
- •95. Роль микрофлоры ротовой полости и особенностей ее метаболизма в возникновении и развитии кариеса.
- •96.Биохимия зубного налета и зубного камня. Влияние зубного налета и зубного камня на возникновение и развитие кариеса и пародонтита
- •97.Заболевания полости рта сопутствующие сахарному диабету. Молекулярные аспекты
- •98.Белки слюны и их роль в норме и в патологии
- •99.Роль макро- и микроэлементов (Ca,p,o2,Mg,r,Na,f и др.) в формировании структур зуба
85.Регуляция обмена кальция и фосфатов. Роль паратгормона и кальцитонина. Синтез кальцийтриола и участие в обмене кальция и фосфора. Гипо- и гиперкальциемия, причины возникновения, следствия.
Паратгормон
Паратгормон (ПТГ) - одноцепочечный полипептид, состоящий из 84 аминокислотных остатков (около 9,5 кД), действие которого направлено на повышение концентрации ионов кальция и снижение концентрации фосфатов в плазме крови.ПТГ синтезируется в паращитовидных железах в виде предшественника - препрогормона, содержащего 115 аминокислотных остатков.
Секреция ПТГ регулируется уровнем ионов кальция в плазме: гормон секретируется в ответ на снижение концентрации кальция в крови.
Роль паратгормона в регуляции обмена кальция и фосфатов
Органы-мишени для ПТГ - кости и почки. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клетки возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.
В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са2+ и фосфатов из кости во внеклеточную жидкость (рис. 11-37).
В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.
Кроме того, паратгормон индуцирует синтез кальцитриола (1,25(OH)2D3), который усиливает всасывание кальция в кишечнике.
Таким образом, паратгормон восстанавливает нормальный уровень ионов кальция во внеклеточной жидкости как путём прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са2+ в кишечнике. Снижая реабсорбцию фосфатов из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.
Кальцитриол
Как и другие стероидные гормоны, кальцитриол синтезируется из холестерола..Действие гормона направлено на повышение концентрации кальция в плазме крови.
1.Синтез кальцитриола
Витамин D3 (холекальциферол) подвергается в организме превращению. Он поступает в печень, где под действием 25-гидроксилазы превращается в 25-гидроксихолекальциферол, затем в почках под действием ПТГ и 1-гидроксилазы – в 1,25-дигидроксихолекальциферол (гормон кальцитриол)
2. Механизм действия кальцитриола
Кальцитриол оказывает воздействие на тонкий кишечник, почки и кости. Подобно другим стероидным гормонам, кальцитриол связывается с внутриклеточным рецептором клетки-мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола. Так, например, в клетках кишечника кальцитриол индуцирует синтез Са2+-переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальную клетку кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани. В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов кальция кальцитриол способствует мобилизации кальция из костной ткани.
РОЛЬ КАЛЬЦИТОНИНА В РЕГУЛЯЦИИ ОБМЕНА КАЛЬЦИЯ
Кальцитонин - полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са2+ и уменьшается при понижении концентрации Са2+ в крови. Кальцитонин - антагонист паратгормона. Он ингибирует высвобождение Са2+ из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбциюионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.
Ги́перкальциеми́я — повышение концентрации кальция в плазме крови
Причины гиперкальциемии многообразны, однако тщательно собранный анамнез и несколько проведенных лабораторных проб позволяет значительно сократить список возможных причин[2]:
усиленное вымывание кальция из костной ткани;
усиленное всасывание кальция в кишечнике;
пониженная экскреция кальция в почках;
пониженное поглощение кальция костной тканью;
сочетание вышеперечисленных причин.
Ги́покальциеми́я — состояние, при котором содержание общего кальция в плазме крови ниже 1,87 ммоль/л, а ионизированного — ниже 1,07 ммоль/л (
Причин гипокальциемии[2]:
заболевания паращитовидных желез, приводящие к гипопаратиреозу;
резистентность тканей-мишеней к паратгормону;
подавление синтеза и секреции паратгормона, в том числе лекарственными средствами;
дефицит магния;
усиленный захват кальция костной тканью;
нарушения обмена витамина D.
86.Синтез уроновых кислот. Образование гликозаминогликанов и протеогликанов, их роль в организме.
Уроновые кислоты (глюкуроновые кислоты) — монокарбоновые кислоты общей формулы OHC2[CH(OH)]nCOOH, формально являющиеся продуктами окисления терминальной гидроксиметильной группы альдоз в карбоксильную группу. Входят в состав биополимеров как растительного, так и животного происхождения.
Глюкуроновая кислота образуется из глюкозы по пути уроновых. Глюкозо-6-фосфат превращается в глюкозо-1-фосфат, который затем взаимодействует с уридинтрифосфатом с образованием активного нуклеотида уридиндифосфатглюкозы (-глюкозы). Последнюю реакцию катализирует фермент UDP-глюкозопирофосфорилаза. Реакции, предшествующие этой стадии, характерны для процесса гликогенеза в печени.UDP-глюкоза окисляется по С-6 с образованием глюкуроната, причем процесс протекает в две стадии. Продуктом стадии окисления, катализируемой NAD-зависимой UDP-глюкозо дегидрогеназой, является UDP-глюкуронат.
UDP-глюкуронат является «активной» формой глюкуроната в реакциях, в результате которых происходит включение глюкуроновой кислоты в протеогликаны, и в реакциях, в которых глюкуронат конъюгируется с такими субстратами, как стероидные гормоны, некоторые лекарственные препараты или билирубин.
В результате NADPH-зависимой реакции глюкуронат восстанавливается до L-гулоната, который является непосредственным предшественником аскорбиновой кислоты у животных, способных синтезировать этот витамин. В организме человека и других приматов, а также морских свинок аскорбиновая кислота не образуется. Гулонат окисляется до , который затем декарбоксилируется с образованием L-ксилулозы.
Ксилулоза в виде D-изомера участвует в пентозофосфатном пути, а из кетогулоната, как показано на рис. 21.1, образуется L-изомер. Для взаимодействия этих двух путей метаболизма необходимо превращение L-ксилулозы в D-изомер; оно осуществляется путем NADPH-зависимого восстановления L-ксилулозы до ксилитола, который затем окисляется до D-ксилулозы в реакции с участием . D-ксилулоза фосфорилируется с образованием D-ксилулозо-5-фосфата, который включается в пентозофосфатный путь.
Протеогликаны - высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса соединительной ткани и могут составлять до 30% сухой массы ткани.
Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Полисахаридные компоненты у разных протеогликанов разные. Протеогликаны отличаются от большой группы белков, которые называют гликопротеинами. Эти белки тоже содержат олигосахаридные цепи разной длины, ковалентно
Гликозаминогликаны - это ВМС, состоящие из белка и ГАГ. Они образуют основное вещество межклеточного матрикса. В матриксе представлены крупные и малые протеогликаны. Крупные: агрекан и версикан. Агрекан - основной протеогликан хрящевого матрикса. Белковый компонент агрекана – коровый белок + ГАГ. Конечный надмолекулярный комплекс состоит из одной молекулы гиалуроновой кислоты и 100 молекул агрекана. Координация сборки этих агрегатов является центральной функцией хондроцитов. Агрекан и связывающий белок продуцируются этими клетками в необходимых количествах.
Функции: Является структурным компонентом межклеточ. матрикса
Необходим для взаимодействия с другим белком межклеточного матрикса
Обеспечивает упругость ткани
Препятствует распространению МО
Гепарин - антикоагулянт, гепарансульфат – компонент мембран клеток
Синтез этих соединений состоит из этапов:
Синтез корового белка
Присоединение связующего трисахарида
Синтез ПС цепей
Сульфатирование
Синтез аминосахаров
Катаболизм происходит при обновлении клеток. Коровый белок расщепляется протеиназами. Цепи ГАГ разрушаются эндо и экзогликозидазами. Отличаются высокой скоростью обмена. Расщепление необходимых фрагментов до моносахаридов осуществляется лизосомальными гидролазами
