
- •50. Переваривание белков в жкт
- •51. Протеолиз белков в клетках: роль лизосом и протеосом. Реакции трансаминирования и дезаминирования.
- •52. Заменимые и незаменимые аминокислоты. Гликогенные и кетогенные аминокислоты. Пути вхождения углеродных скелетов аминокислот в цикл Кребса
- •59.Метаболизм треонина, триптофана и лизина. Катоболизм треонина, биоэнергетика процесса.
- •60. Обеззвреживание аммиака: временное и окончательное. Орнитиновый цикл.
- •Орнитиновый цикл мочевинообразования
- •61. Наследственные патологии обмена аминокислот.
- •62. Обмен хромопротеидов: распад гема. Обтурационная, паренхиматозная и гемолитическая желтуха. Порфирии.
- •63. Обмен нуклеопротеидов: распад пуринов и синтез пиримидинов
- •64. Этапы реализации наследственной информации: репликация, транскрипция, трансляция.
- •65.Трансляция (биосинтез белка)
- •66.Кровь: состав, функция, особенности метаболизма в эритроцитах и лейкоцитах, белки крови.
- •67.Свертывание крови, внешний и внутренние пути.
- •68. Биохимия крови. Молекулярные аспекты газообмена в легких и тканях.
- •69.Буферные системы крови. Нарушения кислотно-основного обмена.
- •70.Биохимия крови. Патологические изменения в составе крови, методы выявления. Использование анализа крови в диагностических целях.
- •71. Распределение в организме и участие в биохимических реакциях: натрия, калия, кальция, магния, кобальта, железа, цинка, фосфора, хлора, фтора
- •72. Биохимия почки: образование мочи в нефронах (ультрафильтрация, реобсорбция, и секреция), состав мочи в норме и при патологии. Аквапорины почки.
- •Показатели химического состава мочи
- •74.Неэкскреторные функции почки: синтез ренина, эритропоэтина, кальцитриола, органических осмолитов и роль этих соединений в организме.
- •75.Регуляция водно-солевого обмена.
- •76. Обмен углеводов, липидов и белков в почке, отличительные черты, значение для почки и организма.
- •77.Патологические компоненты мочи.
- •78. Гормоны поджелудочной железы. Биохимия сахарного диабета
- •79.Гормоны щитовидной железы. Гипо- и гипертиреозы, механизмы возникновения и последствия.
- •80. Гормоны мозгового слоя надпочечников: синтез влияние на обмен веществ, типы рецепторов, физиологические реакции.
- •81. Гормоны коркового слоя надпочечников.
- •82. Обмен веществ в нервной ткани: особенности углеводного, белкового, липидного и нуклеинового обмена.
- •84. Биохимия нервной ткани. Липидный состав нейронов. Биосинтез галактопереброзидов и их роль в нейронах.
- •85.Регуляция обмена кальция и фосфатов. Роль паратгормона и кальцитонина. Синтез кальцийтриола и участие в обмене кальция и фосфора. Гипо- и гиперкальциемия, причины возникновения, следствия.
- •1.Синтез кальцитриола
- •2. Механизм действия кальцитриола
- •87. Структура и функция коллагена, типы коллагенов. Синтез проколлагена с последующим процессингом в тропоколлаген, формирование фибрилл.
- •88. Роль витамина с и проколлагеновых пептидаз в процессинге проколлагена. Образование аллизина и оксиаллизина и их участие в формировании структуры коллагена.
- •89. Биохимия костной ткани. Клетки костной ткани и их участие в построении и резорбции кости. Особенности метаболизма в остеобластах и остеокластах.
- •90. Органические и неорганические компоненты костей. Минерализация и деминерализация костей, и регуляция этих поцессов гормонами.
- •91. Строение зуба и его химический состав. Роль изоморфного замещения в поддержании высокой механической плотности эмали зубов. Особенности белкового состава эмали, дентина и цемента.
- •92. Роль витаминов д и с в метаболизме костной ткани. Регуляторные эффекты гормона роста, паратгормона, кальцитонина и стероидных гормонов.
- •93. Биохимия слюнообразования, факторы регуляции состава, свойств и количества слюны, ее органические и неорганические компоненты.
- •94.Минерализация, деминерализация и реминерализация эмали, участие в этом процессе слюны. Состав и функция ротовой жидкости.
- •95. Роль микрофлоры ротовой полости и особенностей ее метаболизма в возникновении и развитии кариеса.
- •96.Биохимия зубного налета и зубного камня. Влияние зубного налета и зубного камня на возникновение и развитие кариеса и пародонтита
- •97.Заболевания полости рта сопутствующие сахарному диабету. Молекулярные аспекты
- •98.Белки слюны и их роль в норме и в патологии
- •99.Роль макро- и микроэлементов (Ca,p,o2,Mg,r,Na,f и др.) в формировании структур зуба
81. Гормоны коркового слоя надпочечников.
Гормоны коркового вещества надпочечников (кортикостероиды).
Известно более 30 гормонов-стероидов, т.е. производные циклопентанпергидрофенантрена:
1. глюкокортикоиды - оказывают влияние на углеводный обмен;
2. минералокортикоиды - на минеральный обмен;
3. половые гормоны.
Глюкокортикоиды: кортикостерон, кортизол (самый активный в организме человека), кортизон.
Клетки-мишени для глюкокортикоидов - печень, почки, лимфоидная ткань, соединительная ткань, мышцы.
Рецепторы находятся в цитозоле, проходят через мембрану и действуют на ген. Гормон ген белок.
Влияние на обмен веществ:
1. активация глюконеогенеза;
2. повышение уровня глюкозы в крови;
3. повышение синтеза гликогена в печени;
4. стимулируют липолиз в области конечностей и липогенез в области туловища и лица;
5. повышение окисления жирных кислот;
6. повышение образования кетоновых тел;
7. в печени увеличивается синтез белка, в мышцах, лимфоидной, соединительной тканях увеличивается распад белка;
8. противовоспалительное действие, вызывают инволюцию лимфоидной ткани;
9 антиаллергический эффект, подавляют образование антител;
10. подавление синтеза белка в соединительной ткани, задержка образования рубцов и спаек.
Использование глюкокортикоидов в клинике - противовоспалительные, при трансплантации органов для снижения образования рубцов и спаек.
Глюкокортикоиды влияют и на минеральный обмен, но в меньшей степени.
Минералокортикоиды:
- диоксикортикостерон;
- альдостерон.
Клетки-мишени - дистальные канальцы почек. Рецепторы находятся внутри клеток – цитозольные рецепторы. Влияют на синтез белков, транспорт натрия через мембраны, т.е. повышают реабсорбцию натрия и хлоридов из первичной мочи, задерживая натрий в организме. Влияют на углеводный обмен, как и гипоталамус, но в меньшей степени.
Гипофункция коры надпочечников - болезнь Адиссона (бронзовая болезнь). Снижается устойчивость организма к стрессам, гипогликемия, потеря натрия и накопление калия, гипотония, мышечная слабость, утомляемость, повышение пигментации кожи, возможна гибель из-за нарушения водно-солевого обмена.
Гиперфункция - синдром Иценко-Кушинга.
82. Обмен веществ в нервной ткани: особенности углеводного, белкового, липидного и нуклеинового обмена.
Энергетический обмен.
В ткани головного мозга увеличено клеточное дыхание (преобладают аэробные процессы). Мозг потребляет большее количество кислорода, чем постоянно работающее сердце, в 20 раз больше, чем покоящиеся мышцы. 20-25% всего кислорода приходится на долю головного мозга. У детей до 50%.
Ткань головного мозга использует весь кислород, находящийся в ней, за 10 секунд. Следовательно, важное значение имеет кровоснабжение головного мозга. при нарушении кровообращения через 6-8 секунд наступает потеря сознания.
Дыхательный коэффициент (отношение объема СО2 к объему О2) в тканях головного мозга приблизительно равно 1, следовательно углеводы – это основной субстрат для окисления. Мозг – единственный орган, который использует в качестве источника энергии практически одну только глюкозу (при патологии могут использоваться кетоновые тела), т.е. функционирование головного мозга зависит от снабжения глюкозой.
70% АТФ в тканях головного мозга используется для поддержания ионных градиентов (энергия используется для удаления ионов натрия из клетки).
Углеводный обмен.
Исходным субстратом для окисления является глюкоза (не гликоген!). Гипогликемия приводит к судорогам и, возможно, к смерти.
85% глюкозы окисляется аэробно (до углекислого газа и воды), 15% - анаэробно (до лактата). Анаэробное окисление – это аварийный механизм.
Гликогена содержится немного – 0,1%, но интенсивность его обновления достаточно велика. Весь гликоген в ткани головного мозга обновляется за 4 часа. Распад гликогена идет 2 путями:
- фосфорилический (с участием фосфорилазы);
- гидролитический - -амилаза отщепляет остатки глюкозы.
Нарушения обмена углеводов ведут к нарушению функций головного мозга. При авитаминозе В1 нарушается превращение ПВК, следовательно развиваются полиневриты. Угнетение окисления углеводов ведет к развитию торможения в нервной системе (используется при разработке снотворных веществ). Во сне потребление глюкозы снижается, а при возбуждении увеличивается.
Белковый обмен.
При возбуждении увеличивается распад белков и, как следствие, образуется больше аммиака и азота АК. При торможении распад белков снижается.
У человека в больших количествах образуется аммиак, являющийся токсичным веществом для нервной ткани и поэтому он должен быть обезврежен. Обезвреживание происходит путем образования амидов моноаминодикарбоновых АК: [рис. NH2-CH(CH2-CH2-COOH)-COOH (это глутаминовая кислота) +NH3 (над стрелкой глутамин-синтетаза, под Mg2+, АТФАДФ+Фн) NH2-CH(CH2-CH2-CONH2)-COOH (это глутамин)]. Этот процесс интенсивно протекает в нервной ткани, т.к. глутамин свободно выходит из клеток.
Глутаминовая кислота играет особенную роль в обмене веществ:
1. связывает аммиак;
2. участвует в реакциях переаминирования, в результате которых образуются заменимые АК (аспарагиновая кислота);
3. подвергается декарбоксилированию: [рис. NH2-CH(CH2-CH2-COOH)-COOH (это глутаминовая кислота) (над стрелкой глутамат-декарбоксилаза, под – ПФ(В6)) NH2-CH2-CH2-CH2--COOH (это -аминомасляная кислота)]. Образующаяся -аминомасляная кислота является тормозящим нейромедиатором;
4. подвергается окислительному дезаминированию. В результате этого многие АК теряют NH2-группу;
5. является возбуждающим нейромедиатором;
6. стабилизирует содержание ионов калия в клетках нервной ткани.
До 10% глюкозы используется в качестве субстрата для синтеза глутаминовой кислоты.
Липидный обмен.
В нервной ткани липиды не играют энергетической роли. Содержащиеся в основном фосфолипиды и холестерин играют структурную функцию. Нейтральные жиры играют защитную функцию
83. Нейромедиаторы и нейрогормоны: синтез, механизм действия, утилизация (ГАМК-шунт, синтез и распад ацетилхолина)
Нейромедиаторы и нейрогормоны Нервные клетки управляют функциями организма с помощью химических сигнальных веществ, нейромедиаторов и нейрогормонов. Нейромедиаторы -- короткоживущие вещества локального действия; они выделяются в синаптическую щель и передают сигнал соседним клеткам. Нейрогормоны -- долгоживущие вещества дальнего действия, поступающие в кровь. Однако граница между двумя группами достаточно условная, поскольку большинство медиаторов одновременно действует как гормоны.
Сигнальные вещества - нейромедиаторы (или нейромодуляторы) должны удовлетворять ряду критериев. Прежде всего они должны продуцироваться нейронами и храниться в синапсах; при поступлении нервного импульса они должны выделяться в синаптическую щель, избирательно связываться со специфическим рецептором на постсинаптической мембране другого нейрона или мышечной клетки, стимулируя эти клетки к выполнению ими своих специфических функций.
Химическое строение
По химическим свойствам нейромедиаторы подразделяются на несколько групп. В таблице на схеме приведены наиболее важные представители нейромедиаторов -- более чем 50 соединений.
Наиболее известным и часто встречающимся нейромедиатором является ацетилхолин, сложный эфир холина и уксусной кислоты. К нейромедиаторам относятся некоторые аминокислоты, а также биогенные амины, образующиеся при декарбоксилировании аминокислот (см. рис. 183). Известные нейромедиаторы пуринового ряда -- производные аденина. Самую большую группу образуют пептиды и белки. Небольшие пептиды часто несут на N-конце остаток глутаминовой кислоты в виде циклического пироглутамата (5-оксопролин; однобуквенный код: <G). На С-конце у небольших пептидов часто вместо карбоксильной группы стоит амидная группа (-NH2). За счет такой модификации нейропептиды лучше защищены от неспецифического расщепления пептидазами. Эта группа включает также крупные нейробелки.
Механизм действия. Медиаторы и модуляторы связываются с рецепторами постсинаптической мембраны соседних клеток. В постсинаптической мембране имеются различные типы рецепторов, которые используют различные сигнальные пути.
Некоторые рецепторы являются лиганд-активируемыми ионными каналами, например никотиновые холинэргические рецепторы (мышечные и нейрональные), ГАМК-рецепторы и глициновый рецептор. Но чаще всего рецепторы управляют ионными каналами опосредовано с участием G-белков.
Большинство нейромедиаторов стимулируют открывание ионных каналов, и лишь только немногие -- закрывание.
Характер изменения мембранного потенциала постсинаптической клетки зависит от типа канала.
Изменение мембранного потенциала от -60 до +30 мВ за счет открывания Nа+-каналов приводит к возникновению постсинаптического потенциала действия.
Изменение мембранного потенциала с -60 мВ до -90 мВ за счет открывания Cl--каналов ингибирует потенциал действия (гиперполяризация), в результате чего возбуждение не передается (тормозной синапс)
Цикл превращений ГАМК в мозге включает три сопряжённые реакции, получившие название ГАМК-шунта. Первую катализирует глутаматдекарбоксилаза, которая является пиридоксальзависимым ферментом. Эта реакция является регуляторной и обусловливает скорость образования ГАМК в клетках мозга. Продукт реакции - ГАМК. Последующие 2 реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза, также пиридоксальзависимая, образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат используется в цитратном цикле. Инактивация ГАМК возможна и окислительным путём под действием МАО.
Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса; повышает дыхательную активность нервной ткани; улучшает кровоснабжение головного мозга.
ГАМК в виде препаратов гаммалон или аминалон применяют при сосудистых заболеваниях головного мозга (атеросклероз, гипертония), нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях и травмах головного мозга, а также заболеваниях ЦНС, связанных с резким возбуждением коры мозга (например, эпилепсии).
Ацетилхолин синтезируется
в нервной ткани и служит одним из
важнейших возбуждающих нейромедиаторов
вегетативной нервной системы. Его
предшественник - аминокислота серин.(рис)