- •1. Объекты гис
- •2. Методы и задачи промыслово-геофизических исследований в необсаженном (открытом) стволе
- •3. Методы и задачи промыслово-геофизических исследований в обсаженном стволе
- •4. Принципы решения прямых и обратных задач гис
- •Вопросы для контроля
- •Тема 1.1. Разновидности геофизических методов исследования скважин и характеристика объектов исследования
- •1. Понятие каротажа
- •2. Операции в скважинах.
- •3. Скважинная геофизика
- •Тема 2.1. Физические свойства горных пород их связь с геологическими параметрами План:
- •1. Пористость
- •Виды пористости
- •2. Проницаемость
- •3. Трещиноватость
- •4. Водонасыщенность
- •5. Нефтегазонасыщенность
- •6. Плотность
- •Вопросы для проверки
- •Тема 3.1. Электрические методы исследования скважин.
- •1. Сущность методов
- •2. Метод естественного поля (еп
- •Тема 3.2. Удельное сопротивление пород
- •2. Удельное электрическое сопротивление пород
- •Тема 3.3. Метод потенциалов вызванной поляризации
- •1. Сущность метода потенциалов вызванной поляризации
- •Тема 3.4. Метод кажущегося сопротивления (кс)
- •1. Сущность метода
- •2. Определение границ пластов
- •Тема 3.5. Метод собственных потенциалов (сп)
- •1.Сущность метода пс
- •2.Принципы измерения при методе пс
- •Тема 3.6. Микрокаротаж.
- •1.Сущность метода
- •2.Измерение параметров
- •Тема 3.7 Индукционный каротаж.
- •1. Цель метода
- •2. Физические основы метода
- •3. Исследовательские характеристики зондов ик
- •Тема 3.8. Боковой каротаж.
- •1. Цель метода бк
- •2. Расчленение разреза по каротажным кривым
- •Тема 3.9. Радиоактивные методы исследования скважин. Гамма-каротаж. План:
- •1. Методы изучения естественной радиоактивности горных пород в скважинах. Общие сведения.
- •1. Методы изучения естественной радиоактивности горных пород в скважинах. Общие сведения.
- •2. Методика проведения гамма-каротажа
- •Тема 3.10. Гамма-гамма-каротаж (ггк).
- •1. Сущность метода
- •2. Применение метода ггк
- •Тема 3.11. Нейтронный гамма-каротаж (нгк). План:
- •1. Свойства нейтронов
- •2. Нейтронный гамма-каротаж (нгк)
- •3. Влияние скважины на результаты стационарных нейтронных методов
- •4. Применение нейтронных методов
- •5. Импульсный нейтронный каротаж
- •6. Применение импульсных нейтронных методов
- •Вопросы для проверки
- •Тема 3.12. Характеристика аппаратуры при проведении электрического и радиоактивного каротажа.
- •Теоретическая часть
- •1. Геофизические кабели
- •2. Зонды, электроды, грузы
- •3. Спуско-подъемное оборудование
- •4. Определение глубин
- •5. Автоматические каротажные станции
- •6. Лаборатории
- •7. Проведение спуско-подъемных операций
- •Вопросы для проверки
- •Тема 4.1. Акустический каротаж План:
- •1. Цель метода. Область применения.
- •Скорость распространения упругих волн в горных породах возрастает с увеличением их цементации.
- •2. Акустический каротаж по скорости и затуханию
- •3. Форма кривой при акустическом каротаже и определение границ пластов
- •Вопросы для проверки
- •Тема 4.2. Термический метод План:
- •2. Проведение термического каротажа
- •1. Естественное тепловое поле Земли (геотермия)
- •2. Проведение термического каротажа
- •3. Метод изучения местных тепловых полей
- •4. Метод искусственного теплового поля
- •Вопросы для проверки
- •Тема 4.3 Газовый метод.
- •1. Газовый каротаж в процессе бурения
- •2. Определение глубин
- •3. Газовый каротаж после бурения.
- •Тема 4.4 Люминесцентный метод.
- •1. Цель метода
- •2. Принципы определения параметров
- •Тема 5.1. Изучение технического состояния обсадной колонны скважины и определение положения скважины в пространстве. План:
- •1. Измерение искривления скважин (инклинометрия)
- •2. Определение диаметра скважин
- •3. Контроль технического состояния обсадных труб
- •Вопросы для контроля
- •Тема 5.2. Контроль за качеством цементирования скважин.
- •1.Термометрия
- •2. Радиоактивные методы
- •3. Акустический каротаж
- •Тема 6.1. Контроль за обводнением скважин и изучение эксплуатационных характеристик пласта.
- •1. Определение мест притока вод в скважину
- •2.Определение затрубного движения воды.
- •Тема 7.1 и 7.2 – практические
- •Тема 7.3. Определение нефтегазоводонасыщенности.
- •1. Литологическое расчленение
- •1. Понятие о коэффициенте нефтенасыщенности
- •Тема 8.1. Комплекс гис при подземном ремонте скважин и ликвидации осложнений и аварий План
- •1. Определение мест притока воды в скважину, зон поглощения и затрубного движения жидкости
- •3. Определение газонефтяного контакта гнк
- •Тема 9.1. Организация геофизических исследований.
- •1. Организация геофизических исследований
- •2. Промыслово-геофизическое оборудование
- •3. Определение глубин
- •4.Автоматические каротажные станции
- •Лаборатории
- •5. Проведение спуско-подъемных операций
- •Литература Основная
- •Дополнительная
Тема 3.4. Метод кажущегося сопротивления (кс)
План
Сущность метода
Определение границ пластов
1. Сущность метода
При исследованиях скважин методом кажущихся сопротивлений измеряют некоторый параметр, называемый кажущимся удельным сопротивлением (или кажущимся сопротивлением), величина которого зависит от удельных сопротивлений слагающих разрез пород, бурового раствора и ряда других факторов.
Для
измерений в скважину на специальном
кабеле опускают измерительную установку
(зонд), состоящую, как правило, из трех
электродов (заземлителей): А,
М и
N.
Четвертый
электрод В
помещают
на поверхности земли. Электроды А
и
В
предназначаются
для пропускания электрического тока
(питающие или токовые электроды);
электроды М
и
N
—
для измерения разности потенциалов
между двумя точками среды в момент }
протекания
электрического тока (измерительные
электроды). Принципиальные схемы
измерения кажущихся сопротивлений
изображены на рис. 3. I При перемещении
зонда вдоль ствола скважины в зависимости
от удельного электродами М
и.
N. Кажущееся
сопротивление связано с измеряемой
разностью потенциалов следующим
соотношением:
(8)
где
— кажущееся сопротивление, ом
• м; К—
коэффициент зонда, зависящий от расстояния
между электродами зонда, м
',
—разность
потенциалов, измеряемая между электродами
М
и
N,
мв; I —
сила питающего тока, ма.
Рис. 7. Принципиальные схемы измерения кажущегося сопротивления горных пород в скважине.
а — с зондом прямого питания; б — с зондом взаимного питания; А и В — питающие электроды; М и N —измерительные электроды; Б- источник тока; Р — реостат; П — прибор для измерения разности потенциалов (кажущегося сопротивления); АМ —прибор для измерения силы питающего тока.
Рис. 8. Зонды для измерения кажущегося сопротивления горных пород.
1- зонд прямого питания (однополюсный) 2- зонд взаимного питания (двухполюсный); I-питающие электроды (А, В), II — измерительные роды ; IV — точка записи СП.
В зависимости от числа питающих и измерительных электродов различают зонды прямого питания (или однополюсные) и зонды взаимного питания (или двухполюсные) (рис. 4).
Зонд прямого питания имеет один питающий и два измерительных электрода (второй питающий электрод устанавливают в этом случае на поверхности).
Зонд взаимного питания имеет два питающих и один измерительный электрод (второй измерительный электрод устанавливают на поверхности)
При измерениях с зондами прямого питания удается более полно исключить влияние помех, создаваемых естественными и промышленными электрическими токами в земной коре. С зондами взаимного питания более удобно осуществлять одновременную регистрацию кривых КС и СП.
По взаимному расположению электродов различают потенциал- и градиент - зонды.
Потенциал - зондами называют зонды, у которых расстояние между парными электродами, т. е. электродами одного назначения (АВ или MN), значительно больше расстояния от одного из этих электродов до ближайшего непарного, т. е. MN >> AM или АВ > > AM. Расстояние между электродами А и М потенциал - зонда называют его размером, или длиной; измеряемое значение кажущегося сопротивления относят к средней точке отрезка AM (точке записи).
Градиент - зондами называют зонды, у которых расстояние между парными электродами (АВ или MN) значительно меньше расстояния от одного из них до непарного электрода, т. е. MN << AM или АВ << AM. Величину измеряемого кажущегося сопротивления относят к точке, расположенной на середине расстояния между парными электродами (точке записи). Размером, или длиной, зонда считают расстояния от удаленного электрода до точки записи.
Кроме того, зонды подразделяются на последовательные (или подошвенные) и обращенные (или кровельные).
Последовательными называют зонды, у которых парные электроды расположены ниже непарного; обращенными — зонды, у которых парные электроды располагаются выше непарного.
