- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
Построение моделей множественной регрессии включает несколько этапов:
Выбор формы связи (уравнения регрессии).
Отбор факторных признаков.
Требования к включаемым факторам:
-количественно измеримы;
-не должны находиться в точной функциональной связи или быть сильно коррелированы.
2 этапа отбора факторов:
исходя из сущности проблемы;
на основе корреляционной матрицы и t- статистики параметров регрессии
Чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов
Обеспечение достаточного объема совокупности.
Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков.
С одной стороны, чем больше факторных признаков включено в уравнение, тем оно лучше описывает явление. Однако модель размерностью 100 и более факторных признаков сложно реализуема и требует больших затрат машинного времени. Сокращение размерности модели за счет исключения второстепенных, экономически и статистически несущественных факторов способствует простоте и качеству ее реализации. В то же время построение модели регрессии малой размерности может привести к тому, что такая модель будет недостаточно адекватна исследуемым явлениям и процессам.
Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена на основе интуитивно-логических или многомерных математико-статистических методов анализа.
Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в реализации алгоритмов последовательного "включения", "исключения" или "включения-исключения" факторов в уравнение регрессии и последующей проверке их статистической значимости. Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии: 1. Метод исключения – отсев факторов из полного его набора. 2. Метод включения – дополнительное введение фактора. 3. Шаговый регрессионный анализ – исключение ранее введенного фактора.
10. Методы отбора факторов: метод включения и исключения.
Важной составляющей процесса построения эконометрической модели является отбор факторов, существенно влияющих на изучаемый показатель и подлежащих включению в разрабатываемую модель. Оптимальный набор факторов определяется на основе качественного и количественного анализа. Прежде всего, на этапе постановки задачи и содержательного экономического анализа экономической модели отбираются факторы, влияние которых должно быть учтено при построении модели. В ряде случаев набор факторов определяется однозначно или с большой степенью уверенности. Например, спрос на товар определяется в основном ценой и доходом.
В более сложных случаях на следующем этапе с помощью формальных статистических методов проверяется целесообразность включения в модель каждого фактора.
Прежде всего, факторы проверяются на наличие тесной линейной корреляционной зависимости между ними. Признаком наличия линейной корреляционной зависимости между факторами xi и xj является условие
rxixj ≥r1кр.
где rxi x j - выборочный линейный коэффициент корреляции, определяемый соотношением
n-количество наблюдений, r1кр-критическое значение r1кр≈0,8-0,9 (определяется эмпирически).
Существование тесной корреляционной зависимости между факторами приводит к получению ненадежных оценок параметров модели.
Для преодоления сильной межфакторной корреляции применяется ряд подходов:
– исключение из модели одного или нескольких факторов. Из двух коррелирующих факторов исключаются тот, который более коррелирует с остальными факторами;
– преобразование факторов, при котором уменьшается корреляция между ними. Например, переходят от исходных переменных к их линейным комбинациям, не коррелированным друг с другом (метод главных компонент). При построении модели на основе рядов динамики переходят от первоначальных данных к первым разностям уровней ряда ∆yt=yt-yt-1, чтобы исключить влияние тенденции.
Одним из критериев включения факторов в модель является степень их изолированного влияния на результативный признак, определяемая с помощью коэффициента парной корреляции ryxi. Отбираются факторы xi, удовлетворяющие условию rxixj ≥r2кр
где r2кр≈0,5-0,6 (определяется эмпирически).При определении «оптимального» набора факторов могут использоваться два метода:
1. Метод исключения – отсев факторов из полного его набора. 2. Метод включения – дополнительное введение фактора.
Согласно методу включения, сначала строится уравнение регрессии с одним наиболее влияющим фактором (фактор, для которого значение парного коэффициента корреляции с результативным признаком ryxi больше по модулю). Затем в него последовательно вводятся следующие факторы и определяется пара наиболее влияющих факторов. На следующем к первым двум добавляется еще по одному фактору и определяется наилучшая тройка факторов и т. д. На каждом шаге строится модель регрессии и проверяется значимость факторов. В модель включают только значимые факторы. Для проверки значимости фактора могут использоваться либо критерий Стьюдента, либо частный критерий Фишера. Процесс заканчивается, когда не остается факторов, которые следует включить в модель.
Согласно методу исключения сначала строится уравнение регрессии с полным набором факторов, из числа которых затем последовательно исключаются незначимые (наименее значимые) факторы. На каждом шаге исключается только один фактор, так как после исключения какого-либо фактора другой фактор, бывший до этого незначимым, может стать значимым. Процесс заканчивается, когда не остается факторов, которые следует исключить из модели.
Методы включения и исключения не гарантируют определение оптимального набора факторов, но в большинстве случаев дают результаты либо оптимальные, либо близкие к ним.
Не рекомендуется включать в модель очень большое число факторов, так как это может затруднить выявление качественных закономерностей и возрастает опасность включения в модель несущественных случайных факторов.
Кроме того, для получения достаточно надежных оценок параметров желательно, чтобы количество наблюдений превышало количество определяемых параметров не менее чем в 6-7 раз.
