- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
По целям исследований
В зависимости от целей исследования выделяют следующие модели:
функциональные. Предназначены для изучения особенностей работы (функционирования) системы, её назначения во взаимосвязи с внутренними и внешними элементами;
функционально-физические. Предназначены для изучения физических (реальных) явлений, используемых для реализации заложенных в систему функций;
модели процессов и явлений, такие как кинематические, прочностные, динамические и другие. Предназначены для исследования тех или иных свойств и характеристик системы, обеспечивающих её эффективное функционирование.
по общему назначению
Технические
Экономические
Социальные и т.д.
7. Общее понятие эконометрических моделей. Виды эконометрических моделей.( дополнительно есть в тетради т.1 вопр.2) Эконометрические модели – это формализованное описание различных экономических явлений и процессов.Эконометрические модели являются составляющими более широкого класса ЭММ. Данная модель выступает в качестве средств анализа и прогнозирования конкретных экономических процессов, как на макро, так и на микро уровнях на основе реальной статистики.
Эконометрическая модель, учитывая корреляционные связи, позволяет путем подбора аналитической зависимости построить модель на базисном периоде и при достаточной адекватности модели использовать ее для краткосрочного прогноза. Виды эконометрических моделей:
парная регрессия (устанавливает зависимость между двумя переменными);
множественная регрессия (переменная зависит от двух или более факторов);
система экономических уравнений (факторы от которых зависит переменная требуют не одного, а нескольких уравнений);
модели временных рядов (значение переменной за ряд последовательных моментов времени).
Экономические переменные, участвующие в любой эконометрической модели (например y=f(x)), делятся на четыре вида:
экзогенные (независимые) — переменные, значения которых задаются извне. В определенной степени данные переменные являются управляемыми (x);
эндогенные (зависимые) — переменные, значения которых определяются внутри модели, или взаимозависимые (y);
лаговые — экзогенные или эндогенные переменные в эконометрической модели, относящиеся к предыдущим моментам времени и находящиеся в уравнении с переменными, относящимися к текущему моменту времени. Например, xi-1 — лаговая экзогенная переменная, yi-1 — лаговая эндогенная переменная;
предопределенные (объясняющие переменные) — лаговые (xi-1) и текущие (x) экзогенные переменные, а также лаговые эндогенные переменные (yi-1).
Тот же вопрос про виды,но подробно:
Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:
модель временных рядов;
модели регрессии с одним уравнением;
системы одновременных уравнений.
Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.
К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:
а) модель зависимости результативной переменной от трендовой компоненты или модель тренда; б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности; в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.
К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:
а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;
б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;
в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.
Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.
Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.
Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.
Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии:
y=f(x,β)=f(х1,х2,…,хn, β1…βk)
где β1…βk – параметры модели регрессии.
Можно выделить две основных классификации моделей регрессии::
а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;
б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,β).
В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:
а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);
б) функция цены Р=f(Q,Pk), характеризующая зависимость цены определённого товара (Р) от объема поставки (Q) и от цен конкурирующих товаров (Pk);
в) функция спроса Qd=f(P,Pk,I), характеризующая зависимость величины спроса на определённый товар (Р) от цены данного товара (Р), от цен товаров-конкурентов (Pk) и от реальных доходов потребителей (I).
Системой одновременных уравнений называется модель, которая описывается системами взаимозависимых регрессионных уравнений.
Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.
Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.
Основное отличие тождеств от регрессионных уравнений заключается в том, что их вид и значения параметров известны заранее.
Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:
а) уравнение предложения: =а0+а1*Рt+a2*Pt-1;
б) уравнение спроса: =b0+b1* Рt+b2*It;
в) тождество равновесия: QSt = Qdt,
где QSt – предложение товара в момент времени t;
Qdt – спрос на товар в момент времени t;
Рt – цена товара в момент времени t;
Pt-1 – цена товара в предшествующий момент времени (t-1);
It– доход потребителей в момент времени.
В модели спроса и предложения выражаются две результативные переменные:
а) Qt– объём спроса, равный объёму предложения в момент времени t;
б) Pt– цена товара в момент времени t.
