- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
Задача оптимизации. Допустимое множество и целевая функция.
Задача становится разрешимой при введении в нее определенных оценок как для взаимозависимых факторов, так и для ожидаемых результатов. Следовательно, оптимальность результата задачи программирования имеет относительный характер. Этот результат оптимален только с точки зрения тех критериев, которыми он оценивается, и ограничений, введенных в задачу.
Отталкиваясь от вышесказанного, для любых задач оптимального программирования характерны три следующих момента:
1) наличие системы взаимозависимых факторов;
2) строго определенный критерий оценки оптимальности;
3) точная формулировка условий, ограничивающих использование наличных ресурсов или факторов.
Из многих возможных вариантов выбирается альтернативная комбинация, отвечающая всем условиям, введенным в задачу, и обеспечивающая минимальное или максимальное значение выбранного критерия оптимальности. Решение задачи достигается применением определенной математической процедуры, которая заключается в последовательном приближении рациональных вариантов, соответствующих выбранной комбинации факторов, к единственному оптимальному плану.
Математически это может быть сведено к нахождению экстремального значения некоторой функции, то есть к задаче типа:
Найти max (min) f(x) при условии, что переменная х (точка х) пробегает некоторое заданное множество Х:
f(x) ® max (min), х I Х
Определенная таким образом задача называется задачей оптимизации. Множество Х называется допустимым множеством данной задачи, а функция f(x) – целевой функцией.
Итак, оптимизационной является задача, которая состоит в выборе среди некоторого множества допустимых (т. е. допускаемых обстоятельствами дела) решений (Х) тех решений (х), которые в том или ином смысле можно квалифицировать как оптимальные. При этом допустимость каждого решения понимается в смысле возможности его фактического существования, а оптимальность – в смысле его целесообразности.
Понятие оптимального решения задачи.
Очень многое зависит от того, в каком виде задается допустимое множество Х. Во многих случаях это делается с помощью системы неравенств (равенств):
q1 (х1, х2, … , хn) {? , = , ?} 0,
q2 (х1, х2, … , хn) {? , = , ?} 0, (4.2)
qm (х1, х2, … , хn) {? , = , ?} 0,
где q1, q2, … ,qm – некоторые функции, (х1, х2, … , хn) = х – способ, которым точка х задается набором из нескольких чисел (координат), являясь точкой n-мерного арифметического пространства Rn. Соответственно множество Х есть подмножество в Rn и составляет множество точек (х1, х2, … , хn) I Rn и удовлетворяющих системе неравенств.
Функция f(х) становится функцией n переменных f(х1, х2, … , хn), оптимум (max или min), который требуется найти.
Понятно, что следует найти не только само значение max (min) (х1, х2, … , хn), но и точку или точки, если их больше одной, в которых это значение достигается. Такие точки называются оптимальными решениями. Множество всех оптимальных решений называют оптимальным множеством.
Задача, описанная выше, есть общая задача оптимального (математического) программирования, в основе построения которой лежат принципы оптимальности и системности. Функция f называется целевой функцией, неравенства (равенства) qi (х1, х2, … , хn) {? , = , ?} 0, i = 1, 2, … , m – ограничениями. В большинстве случаев в число ограничений входят условия неотрицательности переменных:
х1 ? 0, х2 ? 0, … , хn ? 0,
или части переменных. Впрочем, это может быть и необязательным.
В зависимости от характера функций-ограничений и целевой функции различают разные виды математического программирования:
1. линейное программирование – функции линейны;
2. нелинейного программирования – хотя бы одна из этих функций нелинейна;
3. квадратичного программирования – f(х) является квадратичной функцией, ограничения линейны;
4. сепарабельное программирование – f(х) представляет собой сумму функций, различных для каждой переменной, условия – ограничения могут быть как линейными, так и нелинейными;
5. целочисленное (линейное или нелинейное) программирование – координаты искомой точки х являются только целыми числами;
6. выпуклое программирование – целевая функция – выпуклая, функции – ограничения – выпуклые, то есть рассматриваются выпуклые функции на выпуклых множествах и т. п.
Наиболее простым и часто встречающимся является случай, когда эти функции линейны и каждая из них имеет вид:
а1х1 + а2х2 + … аnхn + b ,
то есть имеет место задача линейного программирования. Подсчитано, что в настоящее время примерно 80-85% всех решаемых на практике задач оптимизации относятся к задачам линейного программирования
