- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
Основные понятия теории оптимизации.
На практике постоянно встречаются такие ситуации, когда достичь какого-то результата можно не одним, а многими различными способами. В подобной ситуации может оказаться и отдельно взятый человек, например, когда он решает вопрос о распределении своих расходов, и целое предприятие или даже отрасль, если необходимо определить, как использовать имеющиеся в их распоряжении ресурсы, чтобы добиться максимального выхода продукции, и, наконец народное хозяйство в целом. Естественно, при большом количестве решений должно быть выбрано наилучшее.
Успешность решения подавляющего большинства экономических задач зависит от наилучшего, наивыгоднейшего способа использования ресурсов. И от того, как будут распределены эти, как правило, ограниченные ресурсы, будет зависеть конечный результат деятельности.
ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ОПТИМИЗАЦИИ
Задача
оптимизации заключается в том,
что заданы
множество Х и функция f(x),
определенная
на X;
требуется
найти точки минимума или максимума
функции f(x)
на X.
Общий вид
задачи оптимизации может быть сформулирован
следующим образом:
f(x)
→
min, x ∈
X.
hk(x)
= 0, k=1,...,K
gj(x)
≥
0, j=1,...,J
При
этом f
будем называть
целевой функцией,
X - допустимым
множеством,
любой элемент
x
∈
X - допустимой
точкой задачи,
hk(x)
- ограничениями
типа равенства,
а gj(x)
- ограничениями
типа неравенств.
Необходимо
дать понятие минимума,
т.е.
той точки,
которая
является решением оптимизационной
задачи
Определение. Глобальным
минимумом f(x) называется
точка x* такая
что: f(x*) ≤ f(x) для
любого x∈X.
Если
мы заменим слово "минимум"
на "максимум",
а в неравенстве
поменяем знак,
то мы получим
определение глобального максимума.
Точки
минимума или максимума еще называют
экстремальными точками,
а задачи -
экстремальными
задачами.
Различают
задачи безусловной оптимизации и задачи
условной оптимизации.
Задача
безусловной оптимизации имеет вид:
f(x)
→
min, x ∈
X.
Рассмотрим
методы решения задач безусловной
оптимизации.
^ Задачи
безусловной оптимизации для функций
одной переменной
Согласно
наиболее простому определению, функция
представляет
собой правило,
которое
позволяет каждому значению
поставить
в соответствие единственное значение
.
В этом
случае
носит
название независимой
переменной,
а
- зависимой
переменной.
Ряд
физических процессов можно описать
(или
построить модели этих процессов)
с
помощью непрерывных
функций,
т.е.
функций,
которые
обладают свойством непрерывности в
каждой точке
,
принадлежащей
областям их определения.
Определение. Функция f,
определенная
на выпуклом множестве X⊂Rn,
называется выпуклой,
если
f(λx1 +
(1-λ)x2) ≤ λf(x1)
+ (1-λ)f(x2)
при
всех x1, x2 ∈ X, λ∈[0,1].
Определение. Функция называется вогнутой,
если функция
-f
является
выпуклой.
Рисунок:
Пример выпуклой
и вогнутой функции.
Понятие методов оптимизации и оптимального программирования.
Суть методов оптимизации (оптимального программирования) заключается в том, чтобы, исходя из наличия определенных ресурсов, выбрать такой способ их использования (распределения), при котором будет обеспечен максимум или минимум интересующего показателя.
Необходимым условием использования оптимального подхода к планированию (принципа оптимальности) является гибкость, альтернативность производственно-хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей).
Оптимальное программирование, таким образом, обеспечивает успешное решение целого ряда экстремальных задач производственного планирования. В области же макроэкономического анализа, прогнозирования и планирования оптимальное программирование позволяет выбрать вариант народнохозяйственного плана (программы развития), характеризующийся оптимальным соотношением потребления и сбережений (накоплений), оптимальной долей производственных капиталовложений в национальном доходе, оптимальным соотношением коэффициента роста и коэффициента рентабельности национальной экономики и т. д.
Оптимальное программирование обеспечивает получение практически ценных результатов, так как по своей природе оно вполне соответствует характеру исследуемых технико-экономических процессов и явлений. С математической и статистической точек зрения этот метод применим лишь к тем явлениям, которые выражаются положительными величинами и в своей совокупности образуют объединение взаимозависимых, но качественно различных величин. Этим условиям, как правило, отвечают величины, которыми характеризуются экономические явления. Перед исследователем экономики всегда имеется – некоторое множество разного рода положительных величин. Решая задачи оптимизации, экономист всегда имеет дело не с одной, а с несколькими взаимозависимыми величинами или факторами.
Оптимальное программирование можно применять лишь к таким задачам, при решении которых оптимальный результат достигается лишь в виде точно сформулированных целей и при вполне определенных ограничениях, обычно вытекающих из наличных средств (производственных мощностей, сырья, трудовых ресурсов и т. д.). В условия задачи обычно входит некоторая математически сформулированная система взаимозависимых факторов, ресурсы и условия, ограничивающие характер их использования.
