- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
Определение доверительного интервала для истинного значение уравнения регрессии
Определение
доверительного интервала сводится к
отысканию интервала,
в котором
с вероятностью
содержится
истинное значение
,
соответствующее
некоторому опыту
из
матрицы наблюдений
.
Другими словами, имеется интервал, в котором с заданной вероятностью находится линия регрессии.
Подставляя
в
эмпирическое уравнение регрессии
получим оценки
для
каждого наблюдения
вида:
Различие между
и
объясняется
действием различных ошибок.
Отметим,
что
имеет
случайный характер,
оценки
и
распределены
нормально с параметрами
,
.
Можно утверждать,
что
.
Другими
словами y
является
состоятельной оценкой истинного значения
,
соответствующего
опыту
,
т.е.
при
неограниченном числе опытов эмпирическая
линия регрессии совпадает с действительной
зависимостью
Составляя дробь Стьюдента, получаем:
.
Задавшись уровнем
значимости
и
найдя табличное значение
можно
построить достоверный интервал для
в
виде
26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
вторая часть
вопроса)Дабы
вернуть дисперсию в реальность,
то есть использовать результат
расчета для более приземленных целей,
из нее извлекают квадратный корень.
Получается так называемое стандартное
отклонение. В
статистике этот показатель еще называют
среднеквадратическим отклонением,
но первое название более короткое
и распространенное.
Формула стандартного отклонения
имеет вид:
Стандартное отклонение еще называют сигмой – от греческой буквы, которой его обозначают. Отсюда и название известного статистического метода «6-сигма». То есть 6 стандартных отклонений. Стандартное отклонение, очевидно, также характеризует меру рассеяния данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Но и этот показатель в чистом виде не очень информативен, так как в нем заложено слишком много промежуточных расчетов, которые сбивают с толку (отклонение, в квадрат, сумма, среднее, корень). Тем не менее, со стандартным отклонением уже можно работать непосредственно, потому что свойства данного показателя хорошо изучены и известны. Сигма, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.
t-статистика – это отношение стандартной ошибки оценки коэффициента к его абсолютной величине. Его конкретное значение можно сравнить с таблицами t-статистик, которые в зависимости от размера выборки показывают выраженные в процентах вероятности, что оно могло возникнуть случайно, когда истинная величина коэффициента была нулевой.
Критерий Стьюдента широко применим в практике проверки статистических гипотез о равенстве средних значений двух выборок или среднего значения выборки с неким значением (целевым показателем). В последнем случае различают двухсторонние и
односторонние гипотезы. Использование данного критерия предполагает сравнение распределения наблюдаемой величины с распределением Стьюдента. В простейшем случае табличное значение критерия Стьюдента сравнивается с расчетным и, на основании этого исследователь делает вывод в пользу нулевой или альтернативной гипотезы.
Условия использования коэффициента Стьюдента:
Исследуемые данные подчиняются нормальному закону распределения
Равенство дисперсий (при сравнении двух выборок)
С помощью критерия
Фишера оценивают
качество регрессионной модели в целом
и по параметрам.
Для этого
выполняется сравнение полученного
значения F
и табличного
F
значения. F-критерия
Фишера.
F фактический
определяется из отношения значений
факторной и остаточной дисперсий,
рассчитанных
на одну степень свободы:
,
где n
- число
наблюдений;
m - число
параметров при факторе х.
F табличный - это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.
Уровень значимости а - вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01.
Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.
