- •Понятие модели. Этапы процесса моделирования.
- •2. Управление как деятельность по принятию решений. Алгоритм процесса принятия решений: основные стадии и их характеристика.
- •4. Классификация методов построения моделей (в частности, экономических) Понятие модели. Адекватность модели.
- •5. Процесс создания модели. Схема цикла моделирования. Взаимосвязь этапов процесса моделирования
- •По целям исследований
- •8. Процесс построения эконометрической модели. (6 вопрос из статистики)
- •9. Построение системы показателей. Принципы отбора факторов модели. Построение многофакторных моделей. Отбор факторов.
- •10. Методы отбора факторов: метод включения и исключения.
- •Мультиколлинеарность факторов (взаимозависимость). Механизм отбора факторов.
- •12. Сравнение и взаимосвязь эконометрических и аналитических моделей.
- •Цели регрессионного анализа
- •Интерпретация параметров регрессии
- •Параметры уравнения регрессии и их оценки, необходимые свойства оценок
- •Аналитическое выравнивание временного ряда с помощью линейной функции как частный случай парной линейной регрессии (уравнение тренда)
- •Определение параметров уравнения связи двух переменных Корреляционные параметрические методы изучения связи
- •Применение матричной алгебры при нахождении параметров уравнения. Выбор степени уравнения, аппроксимирующего связь.
- •Понятие множественной линейной регрессии. Нахождение параметров модели множественной линейной регрессии. ( 6 из статистики )
- •Модели множественной регрессии
- •21. Допущения применения метода наименьших квадратов (5 вопрос)
- •22. Проверка оценок параметров линейной регрессии.
- •23. Проверка истинности моделей множественной регрессии. Стандартные ошибки корреляции, стандартные ошибки параметров линейной регрессии
- •Проверка истинности моделей множественной регрессии:
- •Проверка истинности параметров уравнения парной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов парной линейной регрессии.
- •25. Определение доверительных интервалов коэффициентов регрессии с заданной доверительной вероятностью
- •26. Проверка истинности параметров уравнения множественной линейной регрессии. Определение стандартных отклонений и t-статистики коэффициентов.
- •Определение доверительных интервалов параметров множественной линейной регрессии.
- •Коэффициент детерминации r2 линейной регрессионной модели. Скорректированный r2. Значимость коэффициента детерминации.
- •Парные коэффициенты корреляции. Коэффициент множественной корреляции. Расчет частных коэффициентов детерминации модели.
- •30.Эластичность в социально-экономических моделях. Частные коэффициенты эластичности.
- •Математическая модель межотраслевого баланса моб. Понятие межотраслевого анализа. Модель «затраты-выпуск» (модель Леонтьева).
- •32. Пример построения альтернатив развития региона с помощью межотраслевой модели
- •Основные понятия теории оптимизации.
- •Понятие методов оптимизации и оптимального программирования.
- •Задача оптимизации. Допустимое множество и целевая функция.
- •Понятие оптимального решения задачи.
- •Понятие оптимального решения задачи.
- •Модель развития региона. Понятие комплексного моделирования экономических систем.
- •Сочетание различных видов моделей в процессе управления экономическим развитием: модель моб, тренды экзогенных параметров модели, оптимизационная линейная межотраслевая модель.
Понятие модели. Этапы процесса моделирования.
Объект – некоторая часть окружающего нас мира, которая может быть рассмотрена как единое целое. Свойства объекта – совокупность признаков объекта, по которым его можно отличить от других объектов Модель – это упрощенное представление о реальном объекте, процессе или явлении. Моделирование – построение моделей для изучения объектов, процессов, явлений.
Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Метод моделирования основывается на принципе аналогии. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.Важнейшим понятием при экономико-математическом моделировании является понятие адекватности модели, то есть соответствия модели моделируемому объекту или процессу. Адекватность модели в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно для моделирования экономических систем. При моделировании имеется в виду и не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования.
Изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле.
Модель воспроизводит изучаемый объект или процесс в упрощенном виде. Поэтому при построении любой модели перед исследователем всегда возникают две опасности: переупрощения и переусложнения. Отображая действительность, модель ее упрощает, отбрасывая все «второстепенное» и «побочное». Однако это упрощение не должно быть «произвольным» и грубым.
Процесс моделирования в общем может быть представлен в виде циклической схемы.
Все этапы определяются поставленной задачей и целями моделирования.
В процессе моделирования выделяют 4 этапа: 1. Постановка задачи. • Описание задачи Задача (или проблема) формулируется на обычном языке, и описание должно быть понятным. Главное на этом этапе – определить объект моделирования и понять, что собой должен представлять результат. • Формулировка цели моделирования Целями моделирования могут быть: познание окружающего мира, создание объектов с заданными свойствами («как сделать, чтобы…»), определение последствий воздействия на объект и принятие правильного решения («что будет, если…»), эффективность управления объектом (процессом) и т.д. • Анализ объекта На этом этапе, отталкиваясь от общей формулировки задачи, четко выделяют моделируемый объект и его основные свойства. Поскольку в большинстве случаев исходный объект – это целая совокупность более мелких составляющих, находящихся в некоторой взаимосвязи, то анализ объекта будет подразумевать разложение (расчленение) объекта с целью выявления составляющих и характера связей между ними. 2. Разработка модели (формализация задачи, связанная с созданием модели, то есть модели, записанной на каком-либо формальном языке).
В общем смысле формализация — это приведение существенных свойств и признаков объекта моделирования к выбранной форме.
Для решения задачи на компьютере больше всего подходит язык математики. В такой модели связь между исходными данными и конечными результатами фиксируется с помощью различных формул, а также накладываются ограничения на допустимые значения параметров. • Информационная модель На этом этапе выявляются свойства, состояния и другие характеристики элементарных объектов, формируется представление об элементарных объектах, составляющих исходный объект, т.е. информационная модель. • Знаковая модель Информационная модель, как правило, представляется в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной. • Компьютерная модель Существует большое количество программных комплексов, которые позволяют проводить исследование (моделирование)информационных моделей. Каждая среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов, что обуславливает проблему выбора наиболее удобной и эффективной среды для решения поставленной задачи. 3. Компьютерный эксперимент • План моделирования План моделирования должен отражать последовательность работы с моделью. Первыми пунктами в таком плане должны стоять разработка теста и тестирование модели. Тестирование – процесс проверки правильности модели. Тест – набор исходных данных, для которых заранее известен результат. В случае несовпадения тестовых значений необходимо искать и устранять причину. • Технология моделирования Технология моделирования – совокупность целенаправленных действий пользователя над компьютерной моделью. 4. Анализ результатов моделирования Конечная цель моделирования – принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий – либо исследование продолжается (возврат на 2 или 3 этапы), либо заканчивается. Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется редактирование модели, т.е. возврат к одному из предыдущих этапов. Процесс продолжается до тех пор, пока результаты моделирования не будут отвечать целям моделирования.
