- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
9.1.5. Центрифугирование
Центрифугирование является процессом разделения твердой и жидкой фаз под действием центробежных сил. Используется оно в основном на углеобогатительных фабриках для обезвоживания мелких классов углей, флотационных концентратов и хвостов обогащения. Высокая интенсивность отделения влаги от твердых частиц при центрифугировании обусловлена тем, что ускорение центробежных сил в центрифугах в десятки и сотни раз превосходит ускорение силы тяжести в обычных аппаратах. По принципу своего действия центрифуги разделяются на фильтрующие и осадительные.
Фильтрующие центрифуги оснащены коническим перфорированным ротором, расположенным вертикально или горизонтально. В России получили наибольшее распространение вертикальные фильтрующие центрифуги с вибрационной (типа ФВВ) и шнековой (типа ФВШ) выгрузкой осадка.
Рис. 9.8. Схема фильтрующих центрифуг с вибрационной (а) и шнековой (б) выгрузкой осадка
В фильтрующих центрифугах с вибрационной выгрузкой осадка (рис. 9.8, а) производительностью до 350 т/ч исходный материал подается через загрузочное устройство 4 в нижнюю часть вращающегося фильтрующего ротора 7 диаметром до 1500 мм, установленного на верхних 2 и нижних 1 амортизаторах, связанных с втулкой 5, вращающейся с частотой 350— 470 мин'1 вокруг трубчатой стойки 12. Одновременно ротору сообщаются вертикальные вибрации от эксцентрика 11 через шатун 10 и амортизатор 3. Под комбинированным воздействием центробежных сил и осевых вибраций материал распределяется равномерным потоком по фильтрующей поверхности ротора и обезвоживается, продвигаясь вверх к его широкой части. Фугат проходит через фильтрующие щели стенок ротора и удаляется по желобу 9; обезвоженный материал разгружается через верхнюю кромку ротора в кольцевое пространство между внутренним 6 и наружным 8 кожухами центрифуги и попадает в приемник, расположенный под аппаратом.
В фильтрующих центрифугах со шнековой выгрузкой осадка (рис. 9.8, б) производительностью до 100 т/ч внутри вращающегося с частотой 600 мин-1 сетчатого ротора 2 диаметром до 1000 мм расположен шнек 3 в виде усеченного конуса с закрепленной на его поверхности спиралью. Исходная пульпа подается на вращающуюся крышку шнека и отбрасывается центробежными силами к внутренним стенкам ротора. Вода фильтруется через слой осадка и сетчатую поверхность ротора, и фугат удаляется из корпуса 1 центрифуги. Обезвоженный осадок перемещается по ротору спиралями шнека, вращающегося с меньшей, чем у ротора, угловой скоростью, и разгружается в приемный бункер 4.
Преимуществом фильтрующих вибрационных центрифуг является меньшая измельчаемость материала при центрифугировании и большая чистота фугата, чем в шнековых фильтрующих центрифугах, однако последние позволяют получать осадок меньшей (на 1—1,15 %) влажности, которая зависит от содержания тонких частиц в исходной пульпе и составляет 6—9 %.
Осадителъные центрифуги имеют только шнековую выгрузку осадка. Наибольшее распространение из них получили центрифуги (рис. 9.9) с ротором диаметром до 1350 мм цилин-дроконической конфигурации и горизонтальной осью вращения (чипа НОГШ) производительностыо до 300 м3/ч. Пульпа в них подается внутрь вращающегося шнека 4, а затем через его окна 3 попадает во вращающийся с большой частотой (800 мин-1) ротор 5 и заполняет его до уровня сливных окон 2.
Рис. 9.9. Схема осадительной центрифуги со шнековой выгрузкой осадка
Под действием центробежных сил частицы прижимаются к внутренней стенке ротора, а жидкая фаза переливается через кромку сливных окон 2 и поступает в сборник фугата. Образовавшийся слой осадка из зоны осаждения перемещается шнеком в зону обезвоживания и разгружается через специальные окна 6. Влажность осадка изменяется в пределах 10— 25 %. Увеличение частоты вращения ротора и крупности материала повышает чистоту фугата и снижает влажность осадка; уменьшение крупности материала, увеличение нагрузки на центрифугу и скорости вращения шнека выше оптимальных оказывают обратное влияние. Подача флокулянтов снижает содержание твердого в фугате.
