- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
7.4.2. Установки для радиометрической крупнопорционной сортировки
В отличие от сепараторов на установках радиометрической крупнопорционной сортировки (РКС) осуществляется сортировка значительных порций полезных ископаемых - от 1 - 5 до 50 - 100 т, загруженных при добыче в различные транспортные средства: вагонетки, автосамосвалы, железнодорожные вагоны и др. Основные типы РКС приведены на рис. 7.2 -7.4. На рис. 7.2 изображена автоматизированная установка, применяемая для сортировки флюоритовых руд, размещенных в вагонетках [1].
Рис. 7.2. Схема РКС флюоритовых руд: 1 -вагонетка с рудой; 2 - источник нейтронов; 3 - детектор гамма-излучения; 4 - толкатель; 5 -регистрирующая аппаратура; 6 –блок автоматического управления, приводящий в движение трос и источник нейтронов
В установке используется нейтронно-активационный метод. Установка работает следующим образом. В момент, когда вагонетка с рудой 1 останавливается в зоне измерений, по сигналу с блока автоматического управления 6 приводится в движение трос, и источник нейтронов 2 поднимается до уровня центра вагонетки. Толкатель 4 прижимает его к стенке, и в течение 60 секунд производится активация руды. После этого по команде с блока 6 источник опускается в колодец, заполненный водой для защиты от нейтронов, а его место занимает детектор гамма-излучения 3, соединенный с блоком регистрирующей аппаратуры 5. В течение 60 с производится регистрация наведенного гамма-излучения. В процессе измерения детектор прижимается к стенке вагонетки толкателем, а после завершения измерения толкатель отходит, и установка возвращается в первоначальное положение. В установке используется Ро-Ве-источник активности (1-2)∙107 нейтронов/с. Гамма-излучение регистрируется кассетой из 17 пропорциональных счетчиков типа СИ-22Г, размещенных в два ряда, сигналы с которых записываются с помощью самопишущего прибора.
Другой вариант реализации процесса крупнопорционной сортировки приведен на рис. 7.3 [5].
Рис. 7.3. Вариант реализации крупнопорционной сортировки руд в транспортных емкостях с предварительной раскладкой исходной горной массы в слой на движущейся ленте конвейера (а) и разделением ее на продукты (б): 1 - накопительный бункер; 2 - лента конвейера; 3 - слой руды; 4 -датчик для ядерно-физического опробования; 5 - измерительная аппаратура рудоконтролирующей станции; 6 - загрузочный бункер; 7 -транспортные емкости (самосвалы, вагонетки); 8-исполнительный механизм; 9 - блок управления исполнительным механизмом
В таком варианте руда из бункера 1 подается на ленту 3 конвейера и раскладывается на ней в слой 3 равномерной толщины (желательно в монослой). Облучение рудного слоя первичным излучением и регистрация от него вторичного излучения может осуществляться в двух вариантах. По первому варианту источник первичного излучения и детектор вторичного излучения размещены в устройстве 4, которое расположено над лентой конвейера. По второму варианту устройство 4 расположено под лентой конвейера. В этом случае устраняются неровности облучаемой поверхности рудного потока. По результатам анализа на соответствие интенсивности проявления вторичного излучения от рудной массы кондиционному содержанию в ней ценного компонента, подается команда на исполнительный механизм 8, который отклоняет рудный поток. При этом через бункеры 6 в транспортные емкости 7 разгружается руда заданного сорта. Преимущество такой системы заключается в том, что датчик, содержащий первичный источник ионизирующего излучения, удален от обслуживающего персонала (в том числе и от водителей самосвалов и электровозов) на безопасное расстояние, что в значительной мере облегчает соблюдение требований техники безопасности.
Использование радиометрического опробования и сортировки руд при их транспортировании на конвейере или в емкостях способствует значительному повышению эффективности циклично-поточной (ЦПТ) или поточной системы горных работ, особенно при подземной разработке месторождений. Геотехнологии с внутрирудничной РКС обеспечивают повышение качества добываемой руды, существенное снижение отходов горного производства при резком сокращении грузопотоков горной массы на поверхность за счет размещения отсортированных пустых и слабооруденелых пород в выработанном пространстве. Это позволяет не только существенно уменьшить затраты на подъем горной массы, но и оздоровить экологическую обстановку в регионе за счет значительного сокращения сооружения на поверхности отвалов и хвостохранилищ и выноса из них токсичных компонентов.
Вариант использования РКС в технологической схеме с ЦПТ представлен на рис. 4.4.
Рис. 4.4. Транспортно-технологическая схема при циклично-поточной технологии подземной добычи руды с использованием радиометрической сортировки: 1 - опрокидыватель, 2 — питатель. 3 — дробилка крупного дробления: 4 - конвейерный подъем; 5 - блок облучения установки радиометрического порционного опробования руд «на просвет»; 6 - блок регистрации установки радиометрического опробования руд; 7 -исполнительный механизм разделения рудного и породного потоков; 8 - породный конвейер: 9 - комплекс радиометрической порционной сортировки руд по направлениям: на металлургический передел (10), на обогатительную фабрику (11), на сепарацию (12), в отвал (13); 14 - единое зондовое устройство с облучателем и блоком детектирования
Горная масса из очистных забоев из опрокидывателя 1, по питателю 2 подается в дробилку крупного дробления 3, далее на конвейер с размещенной установкой радиометрического порционного опробования руд 5, 6. Отсортированные с помощью исполнительного механизма 7 порции породы поступают на породный конвейер 8 и используются для закладки выработанного пространства. Руда по конвейерному подъему 4 выдается на поверхность на комплекс радиометрической порционной сортировки руд 9.
В комплексе 9 реализован способ опробования и сортировки руд, предусматривающий пересыпку рудопотока через два бункера с размещенными в них стационарно зондовыми устройствами 14. При заполнении рудой первого бункера питающий конвейер автоматически переключается на загрузку второго бункера, одновременно в первом бункере включается программа «Опробование», производятся радиометрические измерения, по окончании которых через 5-7 мин включается программа «Разгрузка», и рудная масса из первого бункера разгружается в транспортное средство и направляется в зависимости от ее качества на металлургический передел, на обогатительную фабрику, на покусковую сепарацию, в отвал. При заполнении второго бункера питающий конвейер переключается на первый, производится радиометрическое опробование руды, загруженной во второй бункер. Далее цикл повторяется. Вариант опробования и сортировки с использованием двух бункеров прост и технологичен в реализации, позволяет обеспечить нормы радиационной безопасности с наименьшими затратами.
Для осуществления процесса РКС применяются те же типы источников и детекторов излучения, а также аналогичные способы выделения полезного сигнала, что и на сепараторах или установках АПР, использующих эти радиометрические методы. Геометрия измерений, конструкция узлов облучения и детектирования при реализации РКС должны обеспечивать измерение возможно большей массы, поданной на сортировку руды, с достаточной точностью и экспрессностью.
