- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
Радиоактивность горных пород и руд в основном обусловлена содержанием в них элементов урано-радиевого ряда, ториевого ряда и калия, распад которых сопровождается γ -излучением.
Метод находит широкое применение на всех стадиях горнотехнологического цикла переработки радиоактивных руд.
Объектами применения методов обогащения полезных ископаемых, основанных на естественной радиоактивности руд, являются месторождения редкоземельных элементов, таких, как тантал, ниобий, иттрий, церий, лантаноиды, минералы которых, как правило, содержат торий, а также месторождения, в рудах которых наблюдается тесная корреляционная связь между полезным компонентом и радиоактивной примесью. К числу последних, например, относятся золото-урановые месторождения.
В связи с тем, что содержание радиоактивных элементов в различных комплексах горных пород существенно различается, изучение естественной радиоактивности пород используется при каротаже скважин для оценки их обогатимости.
7.2.3 Люминесцентный метод
Люминесцентный метод разделения руд, используемый при их обогащении характеризуется шестью признаками разделения [14]:
• амплитудно-интегральный - регистрируется интегральная интенсивность люминесценции во всем спектральном диапазоне. Этот признак разделения может быть использован, например, при разделении апатитовых руд, т.к. при облучении рентгеновским излучением смеси полезных (апатит) и сопутствующих (нефелин, содалит, титаномагнет, сфен и др.) минералов свечение возникает только у минералов апатита;
• амплитудно-спектральный - регистрируется интенсивность люминесценции минералов в заданной части спектрального диапазона;
• амплитудно-временной по разгоранию люминесценции - регистрация интенсивности люминесценции осуществляется в процессе ее разгорания;
• амплитудно-временной по затуханию люминесценции - регистрация интенсивности люминесценции осуществляется в процессе ее затухания;
• амплитудно-спектрально-временной, - регистрация интенсивности люминесценции осуществляется в процессе ее затухания, причем в заданном спектральном диапазоне;
• амплитудно-временной со стимуляцией люминесценции - главным критерием этого признака является создание условий, при которых происходит стимуляция люминесценции либо полезного, либо сопутствующего минералов. Воздействие на минерал в процессе затухания его люминесценции дополнительным излучением с энергией по величине равной энергии освобождения электронов из ловушки (энергия активации), приводит к тому, что скачком увеличивается вероятность их высвобождения из электронных ловушек, тем самым повышается концентрация свободных электронов в зоне проводимости. При этом резко возрастет вероятность их рекомбинации с ионизованными центрами люминесценции. Такая ситуация приводит к вспышке свечения, а процесс затухания люминесценции ускоряется.
7.2.4 Фотометрические методы
При облучении образца горной массы световым потоком видимого диапазона Ф0 можно наблюдать, как этот поток распределяется на границе раздела сред воздух - горная порода и в самом образце. Математически этот процесс можно записать в виде
(7.1)
где Фr,Фσ,Фμ,Фt - лучистые потока соответственно отраженный, рассеянный, поглощенный и прошедший через образец горной породы. Если разделить уравнение (7.1) на Ф0, то получим уравнение
где r, σ, μ, t - коэффициенты соответственно отражения, рассеяния, поглощения и пропускания.
Эти коэффициенты являются основными характеристиками компонентов минерального сырья. Различие разделяемых компонент минерального сырья по основным оптическим характеристикам: коэффициентам отражения, пропускания, рассеяния, цвету, - позволяет использовать фотометрический метод для радиометрического обогащения (покусковой сепарации или мелкопорционной сортировки).
Цвет минерального сырья в свою очередь определяется законами отражения, поглощения, пропускания, свойствами вещества и спектральным составом источника света. Коэффициент отражения содержит информацию о поверхностных свойствах разделяемой компоненты, а коэффициенты пропускания и рассеяния - о ее объемных свойствах.
При фотометрическом разделении рудной массы часто используют различие минеральных агрегатов по их яркостному контрасту. Для этого применяют метод, в котором сравнивают яркостный контраст образца В0 и выбранного фона Вф* по величине, определяемой уравнением [120]
(7.2)
делается вывод, относится ли данный образец к руде или к породе. Если яркостный контраст фоновой пластины подбирается таким образом, что его значение соответствует яркостному контрасту минерального агрегата с минимально значимым содержанием полезного компонента, то в этом случае величина К в уравнении (7.2) будет называться пороговой контрастностью. Все образцы, значение яркостного контраста которых превышаю величину пороговой контрастности К, будут относиться к руде, в противном случае - к породе.
Необходимо отметить, что коэффициент отражения различных типов горных пород изменяется по длинам волн. Таким образом, для разделения минерального сырья можно использовать разницу в коэффициентах отражения на выбранной длине (или диапазоне длин) волн.
