- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
6.4. Пироэлектрическая и диэлектрическая сепарация
6.4.1. Пироэлектрическая сепарация
Пироэлектрическая сепарация основана на свойстве группы минералов (турмалина, каламина, борацита и др.) поляризоваться при нагревании и охлаждении из-за различных коэффициентов теплового расширения их по разным осям кристаллов. Неодинаковые напряжения, возникающие в таких кристаллах, вызывают образование локальных разноименных зарядов на противоположных концах кристалла. Если один из разделяемых минералов обладает способностью к пироэлектрической поляризации, то при создании резкого температурного перепада он получит электрический заряд, а остальные минералы останутся незаряженными.
Разделение минералов в пироэлектрических барабанных сепараторах (рис. 6.6, а) производится в неоднородном электростатическом поле постоянной полярности. Материал после нагревания в бункере 1 нагревателями 2 поступает на вращающийся барабан 3, охлаждаемый водой.
Рис. 6.6. Схемы пироэлектрического (а) и диэлектрического (б) сепараторов
Минералы, склонные к пироэлектрической электризации, заряжаются при перепаде температур и удерживаемые на барабане силой зеркального отображения выносятся в приемник 4. Минералы, не обладающие пироэлектрическим эффектом, попадают в приемник 5, сростки — в приемник 6.
6.4.2. Диэлектрическая сепарация
Диэлектрическая сепарация осуществляется в жидкой среде, диэлектрическая проницаемость которой является промежуточной между диэлектрическими проницаемостями разделяемых минералов. В качестве среды используются обычно парные смеси из бензола, нитробензола, керосина, толуола, гексана, ацетона и других веществ. Сепарацию применяют в схемах обогащения руд редких металлов.
Диэлектрический сепаратор (рис. 6.6, б) состоит из ванны 7, заполняемой жидким диэлектриком, системы электродов 2, между которыми создается неоднородное электростатическое поле напряженностью до 5 кВ/см переменной полярности промышленной частоты. Знаки зарядов тонких параллельных наклонных цилиндрических электродов чередуются в вертикальном и горизонтальном направлениях, чтобы исключить влияние свободных зарядов. Исходный материал подается в рабочее пространство сепаратора сверху. Частицы с более высокими диэлектрическими проницаемостями и проводимостями притягиваются к электродам, а затем сползают к приемнику 3. Частицы с более низкой, чем у среды, диэлектрической проницаемостью свободно проходят через щели между электродами и поступают в приемник 4. Производительность сепаратора не превышает десятков кг/ч.
Пироэлектрическая и диэлектрическая сепарации имеют пока ограниченное применение в промышленности.
Тема 7. Радиометрические методы обогащения
7.1. Общая характеристика процессов радиометрического обогащения
Современная горно-геологическая ситуация России такова, что минерально-сырьевая база страны текущего столетия будет характеризоваться истощением запасов крупных месторождений с относительно высоким качеством полезных ископаемых, в связи с интенсивным освоением недр в течение всего 20-го столетия. Это обстоятельство вызывает необходимость осваивать месторождения с более низким содержанием полезных компонентов, вовлекать в разработку так называемые малые месторождения (мелкие по объему, но с высоким содержанием ценных компонентов), проводить на уже разрабатываемых месторождениях доработку забалансовых запасов некондиционных руд, сохраненных в недрах, вовлекать в переработку техногенные месторождения, представляющие собой отвалы и хвосты процессов обогащения, образовавшиеся за все время эксплуатации месторождений. При такой ситуации становится очевидной необходимость дополнения традиционных подходов в обогащении новыми методами, позволяющими повысить не эффективность получения товарных концентратов в процессе переработки полезных ископаемых.
На вышеперечисленных объектах минерального сырья необходимо тщательно подходить к выбору методов обогащения.
По предложению чл.-корр. АН СССР В.И.Ревнивцева [17] качественно новые изменения следует вносить, прежде всего, на стыках процессов и переделов составляющих общую технологию получения товарных продуктов из минерального сырья.
Уровень развития любой горной технологии, направленной на получение из полезного ископаемого качественного продукта, во многом определяется селективностью методов диагностики ценных компонентов минерального сырья, применяемых при обогащении. Успехи, достигнутые во второй половине двадцатого столетия при изучении процессов взаимодействия различных видов излучений с веществом, позволили приступить к использованию ядерного и электромагнитного излучения для повышения селективности методов обогащения полезных ископаемых.
При взаимодействии излучений с минералами происходят следующие процессы: поглощение первичного излучения, его рассеяние (отражение) и испускание вторичного излучения различной природы. Интенсивность каждого из этих явлений зависит как от природы минерала, так и от вида первичного излучения. Поэтому, применяя различные виды излучений, можно значительно увеличить количество и селективность методов диагностики ценных компонентов минерального сырья. Это создает предпосылки для решения сложных задач, которые не удавалось решить ранее.
Методы, основанные на взаимодействии различных видов излучений с веществом, называются радиометрическими методами [1]. С их помощью можно решать различные технологические задачи переработки руд, включая предварительную концентрацию (предконцентрацию) горной массы. Для предконцентрации добытой горной массы с целью формирования рудного потока и его обогащения могут использоваться гравитационные (отсадка и тяжелые суспензии) и радиометрические методы. Однако, радиометрические методы в ряде случаев, когда нет резкого разделения по плотности ценных минералов и пустой породы, будут иметь преимущество над гравитационными методами. Например, из 250 месторождений руд цветных и редких металлов, обследованных сотрудником института Механобр Ю.С. Бадеевым [8], целесообразность обогащения в тяжелых суспензиях установлена только для 39 месторождений.
Приоритет в применении радиометрических методов в обогащении минерального сырья принадлежит нашей стране. Еще в тридцатых годах прошлого столетия один из радиометрических методов - люминесцентный, предложенный сотрудником Всесоюзного института минерального сырья (ВИМС) М.Е. Богословским, применялся при изучении обогатимости алмазосодержащего сырья, а, начиная с 70-х годов, первые радиометрические сепараторы стали работать как на отечественных, так и на зарубежных алмазных обогатительных фабриках [1].
Большой скачок в развитии радиометрических методов в обогащении произошел в сороковых годах, когда началось промышленное освоение нового для того времени вида минерального сырья - естественно-радиоактивных руд [18]. Специалисты нашей страны разработали метод обогащения, основанный на регистрации естественной активности руд, создали аппаратуру и внедрили в промышленность еще до того, как за рубежом появились первые публикации об этом методе. Большой вклад в развитие теории радиометрического обогащения и разработку принципов конструирования аппаратуры внесли такие выдающиеся ученые и инженеры нашей страны, как Г.Р. Гольбек, В.А. Мокроусов, В.А. Лилеев, О.А., Архипов, В.И. Ревнивцев, Л.П. Старчик, В.В. Новиков, Б.С. Горобец, А.П. Татарников, Б.С. Лагов, А.И. Левитин, Э.Г. Литвинцев, Е.Н. Гулин, В.В.Зверев и др. Своими работами они доказали, что для обогащения полезных ископаемых можно использовать различные виды излучения в широком диапазоне энергий от ядерного излучения до радиоволн.
Радиометрические методы, применяемые при предконцентрации и обогащении минерального сырья, разделяется на два вида [1]:
1) радиометрическая крупно порционная сортировка;
2) радиометрическая сепарация.
Радиометрическая крупнопорционная сортировка производится без какой-либо предварительной подготовки на основе измерения интенсивности взаимодействия излучения с крупными объемами горной массы, загруженные в различные транспортные емкости — ковши экскаваторов, вагонетки автосамосвалы, скипы и т.д. По результатам измерений определяются средние содержания полезных компонентов в каждой емкости и в зависимости от ее качества, порции направляются в тот или иной продукт сортировки.
Радиометрическая сортировка является высокопроизводительным процессом. Однако ее эффективность зависит от характера распределения полезного ископаемого. Если оно распределено достаточно неравномерно, то эффективность сортировки будет высока. В противном случае добиться удовлетворительных технологических показателей не удается.
Радиометрическая сепарация - это разделение горной массы, представляющей собой кусковой материал определенного класса крупности. Как правило, модуль класса не превышает 2 единиц. Разделение производится на специальных аппаратах - радиометрических сепараторах. С их помощью разделяются куски крупностью до 200-250 мм (в отдельных случаях до 300мм). Нижний предел крупности сепарируемого минерального сырья зависит, с одной стороны, от применяемого метода и уровня его развития, с другой стороны, от свойств кусков горной массы. В настоящее время технически возможно разделять рудный материал крупностью до 1 мм. Необходимо отметить, что с уменьшением крупности разделяемого материала снижается и производительность сепараторов. На сегодняшний день известен метод повышения производительности радиометрического разделения горной массы крупностью менее 3 мм миллиметров. Этот метод базируются на процессе мелкопорционной сепарации. Разделяемый материал распределяется монослоем по поверхности транспортирующего устройства, а облучение и регистрация интенсивности взаимодействия излучения с сепарируемым материалом осуществляется с некоторой площади, занимаемой горной массой на транспортирующем устройстве. Тем не менее, нижний предел крупности кусков устанавливается, исходя из экономических предпосылок. Наиболее часто нижний предел сепарируемого материала составляет 20-25 мм. Поэтому горную массу, как правило, разбивают на следующие классы крупности: -200+100, -100+50, -50+25 (20) мм или -250+150, -150+75, -75+35, -35+20 мм. Сепарация горной массы этих классов крупности называется крупнокусковой сепарацией.
Необходимо отметить, что радиометрическая сепарация может использоваться не только для предконцентрации руд, но и непосредственно как обогатительная операция с получением готового концентрата. Использование радиометрической сепарации на отбитых рудах Восточного фланга Северного рудного тела месторождения Заполярное и Северного рудного тела месторождения Котсельваара позволяет выделить более 20% богатой, содержащей 3,5-4,3 % Ni и 1,5-1,9 % Си, руды, которая, минуя флотационный передел, может быть направлена непосредственно в плавцех .
Применение процессов предконцентрации на информационной основе радиометрических методов сортировки и сепарации горной массы, во многих случаях позволяет вовлекать в эксплуатацию значительную часть забалансовых и некондиционных руд и в то же время, в некоторой степени, сокращать объем, подаваемых на глубокое обогащение, руд; снизить долю тонкоизмельченных хвостов и устранить ряда других трудностей. С помощью радиометрических методов сортировки и сепарации можно создавать эффективную ресурсосберегающую технологию переработки минерального сырья, обеспечивающую полное и комплексное использование полезных ископаемых.
Следовательно, опираясь на информационную базу радиометрических методов обогащения минерального сырья, можно успешно решать актуальные задачи переработки руд.
