- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
1.2.1.3. Текстурные и структурные особенности
Текстурные и структурные особенности в строении ПИ характеризуются крупностью минералов, формой и пространственным распределением минеральных включений и их агрегатов.
К основным формам минеральных зерен относятся:
- идиоморфная (ограниченная гранями кристалла);
- аллотриморфная (ограниченная формой заполняемого пространства);
- коллоидная;
- пластинчатая;
- эмульсионная;
- осколки и обломки.
В зависимости от размера минералов различают
- крупную (20-2 мм);
- мелкую (2-0,2 мм);
- тонкую (0,2-0,02 мм);
- эмульсионную (0,02-0,002 мм);
- субмикроскопическую (0,002-0,0002 мм);
- коллоидно-дисперсную (менее 0,0002 мм)
вкрапленность минералов.
Структура минеральных агрегатов может быть: зернистой, зональной, полосчатой, каркасной, петельчатой, решетчатой, эмульсионной, неоднородной, нитеобразной, раскрошенной, натечной, скелетной, цементной, раздробленной.
Текстура руды, т.е. взаимное расположение минеральных агрегатов, может быть:
- полосчатой, слоистой (минеральные агрегаты примыкают друг к другу);
- конкреционной (располагаются один внутри другого);
- петельчатой (взаимно проникают др. в друга);
- пористой;
- концентрически–зональной, кокардовой, корковой, в которых последовательно одни минералы окаймляют другие.
Вкрапленность минералов существенно влияет на показатели ОПИ. Наиболее высокие показатели достигаются при крупной вкрапленности минералов, имеющих идиоморфную форму и форму обломков и осколков. Показатели существенно ухудшаются при пластинчатой форме зерен и решетчатой, петельчатой, зональной структуре агрегата. При натечной структуре агрегатов наибольшие потери наблюдаются при концентрически–зональной, корковой текстуре, при каркасной структуре агрегата – при пористой текстуре.
Таким образом, чем крупнее вкрапленность минералов и совершеннее форма их выделений, тем проще методы и выше показатели переработки.
1.2.2. Физические свойства
Из физ. свойств наибольшее значение имеет механическая прочность (крепость) руд, определяющая энергетические затраты при их дроблении и измельчении, с целью раскрытия минералов. Следовательно, механическая прочность характеризуется дробимостью, хрупкостью, твердостью абразивностью.
Дробимость характеризует способность ПИ сопротивляться разрушению под действием динамических напряжений, передаваемых материалу непосредственно дробящими устройствами.
Хрупкость характеризуется свойством минералов и их агрегатов разрушаться при механическом воздействии на них без применения специальных дробящих устройств.
Твердость характеризует способность тела противодействовать проникновению в него другого, более твердого тела. Существует 10 бальная шкала твердости Мооса, представляющая собой ряд эталонных минералов (табл.1.1).
Таблица 1.1
Шкала твердости различных минералов по Моосу
минерал |
Твердость |
Простейший способ определения твердости |
тальк |
1 |
Минерал пишет по бумаге, не царапая ее |
гипс |
2 |
Царапает бумагу |
флюорит |
3 |
Кончик ножа легко без усилия чертит по минералу |
кальцит |
4 |
Необходимо небольшое усилие ножа |
апатит |
5 |
Чертит ножом при значительном усилии |
ортоклаз |
6 |
Минерал оставляет царапину на стекле |
кварц |
7 |
Минерал оставляет царапину на стекле |
топаз |
8 |
Минерал оставляет царапину на стекле |
корунд |
9 |
Минерал оставляет царапину на стекле |
алмаз |
10 |
Минерал оставляет царапину на стекле |
Крепость горных пород характеризует их сопротивляемость технологическому разрушению. Существует шкала М.М. Протодъяконова крепости горных пород, приведенная в табл. 1.2.
Прочность образцов неправильной формы можно рассчитать по формуле
где F – усилие раздавливания; γ – плотность образца; G – масса куска породы.
Коэффициент крепости можно рассчитать либо по формуле
либо более точно по формуле
.
Показатель абразивности горных пород составляет (мг):
- для мягких – до 10;
- средних от 10до 30;
- твердых от 30 до 45;
- весьма твердых более 45.
Из других физизических свойств минералов и их агрегатов выделяют пористость, газопроницаемость, кусковатость и влажность.
Таблица 1.2
Крепость минералов по шкале М.М. Протодъяконова
Категория |
Степень крепости |
Порода |
Коэффициент крепости |
I |
В высшей степени крепкая |
Наиболее крепкие, плотные и вязкие кварциты и базальты; исключительные по крепости другие породы |
20 |
II |
Очень крепкая |
Очень крепкие гранитовые породы, кварцевый профир, очень крепкий гранит, кремнистый сланец, самые крепкие песчаники и известняки |
15 |
III |
Крепкая |
Гранит (плотный) и гранитовые породы, очень крепкие песчаники и известняки, кварцевые рудные жилы, крепкий конгломерат, очень крепкие железные руды |
10 |
IIIa |
Крепкая |
Известняки (крепкие), некрепкий гранит, крепкие песчаники, крепкий мрамор, доломит, колчеданы |
8 |
IV |
Довольно крепкая |
Обычный песчаник, железные руды |
6 |
IVa |
Довольно крепкая |
Песчанистые сланцы, сланцевые песчаники |
5 |
V |
Средняя |
Крепкий глинистый сланец, некрепкий песчаник и известняк, мягкий конгломерат |
4 |
Va |
Средняя |
Разнообразные сланцы (некрепкие), плотный мергель |
3 |
VI |
Довольно мягкая |
Мягкий сланец, очень мягкий известняк, мел, каменная соль, гипс, мерзлый грунт, антрацит, обыкновенный мергель, разрушенный песчаник, сцементированные галька и хрящ, каменный грунт |
2 |
VIa |
Довольно мягкая |
Щебенистый грунт, разрушенный сланец, слежавшаяся галька, щебень, крепкий каменный уголь, отвердевшая глина |
1,5 |
VII |
Мягкая |
Глина (плотная), мягкий каменный уголь, крепкий нанос-глинистый грунт |
1 |
VIIa |
Мягкая |
Легкая песчанистая глина, лесс, гравий |
0,8 |
VIII |
Землистая |
Растительная земля, торф, легкий суглинок, сырой песок |
0,6 |
IX |
Сыпучая |
Песок, осыпи, мелкий гравий, насыпная земля, добытый уголь |
0,5 |
X |
Плывучая |
Плывуны, болотистый грунт, разжиженный лесс, и другие разжиженные грунты |
0,3 |
Пористость и газопроницаемость определяет восстановимость руд. Например, наиболее высокой восстановимостью характеризуются бурые железняки и сидеритовые руды, наименьшей – магнетитовые руды.
Кусковатость руд является нормирующим показателем, определяющим кондиции руд черных металлов. Например, для магнетитовых руд верхний предел крупности составляет 40-50 мм, для бурых железняков -80-120 мм; нижний предел крупности для всех железных руд -10 мм.
Влажность руд может вызывать смерзаемость и существенно затруднять транспортирование ПИ, ухудшить условия его переработки и технологические свойства. Влажность снижает упругие свойства горных пород – модуль Юнга (коэффициент пропорциональности между действующим продольным напряжением σ и соответствующей ему относительной деформацией Δl/l (l - первоначальная длина, Δl –абсолютное удлинение или сокращение) – σ = ЕΔl/l); модуль сдвига G (показатель, связывающий касательные напряжения τ с деформацией сдвига φ G = τ/φ); модуль сжатия К (коэффициент пропорциональности между всесторонним сжатием σ′ и относительным уменьшением объема σ′=КΔV/V), а также увеличивает модуль Пуассона μ (коэффициент пропорциональности между относительным удлинением и относительным поперечным сокращением образца Δd/d = μΔl/l) и значительно изменяет их термические и электрические свойства.
Влажность Wп (%) рассчитывается по формуле
где G′1, G2 – масса соответственно насыщенного водой и сухого образца.
Следующие свойство это плотность горных пород, которая определяется плотностью слагающих их минералов, которые в свою очередь, делятся на тяжелые (более 4), средние (2,5-4,0) и легкие (менее 2,5). Кроме того, существует еще и такое понятие как насыпная плотность, характеризующая отношение массы руды к занимаемому ей объему.
