- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
Тема 6. Электрические методы обогащения
6.1. Физические основы электрических методов обогащения
6.1.1. Сущность электрических методов обогащения
Электрические методы обогащения основаны на различии электрических свойств разделяемых минералов. Различаясь по электропроводности, диэлектрической проницаемости, контактному потенциалу, трибоэлектрическому, пироэлектрическому или пьезоэлектрическому эффекту, они приобретают при зарядке различную величину или знак заряда и, как следствие, разную траекторию движения в электрическом поле, обеспечивая разделение частиц по их электрическим свойствам или электрическую сепарацию минералов.
Зарядка частиц сепарируемого материала может осуществляться контактированием с заряженным электродом, ионизацией в электрическом поле коронного разряда, электризацией трением, изменением температуры, давления и другими способами. Выбором способа зарядки частиц обеспечивается наибольшее различие в электрических свойствах основных разделяемых минералов и тем самым максимальная эффективность электрической сепарации.
На каждую заряженную минеральную частицу при сепарации в электрическом поле действуют:
• электрическая кулоновская сила Fэ, обусловленная притяжением частицы к противоположно заряженному электроду и отталкиванием ее от одноименно заряженного как в однородном, так и в неоднородном поле. Влияние Рэ на траекторию движения частиц практически нивелируется только в поле переменной полярности из-за механической инерции частиц;
• сила зеркального отображения F3, обусловленная взаимодействием остаточного заряда частицы и вызванного этим зарядом на поверхности электрода равного по величине индуктивного заряда. Сила направлена к электроду. По абсолютной величине она значительно меньше Рэ и ее действие заметно лишь вблизи электрода или при соприкосновении с ним;
• пондеромоторная сила Fп обусловленная разницей между значениями диэлектрической проницаемости частицы εч и среды εс, в которой осуществляется сепарация. Она стремится вытолкнуть частицу в более слабые участки поля, если εч < εс, и наоборот втянуть при εч > εс. Сила проявляется только в неоднородном поле, в том числе, в отличие от Fэ, и в полях переменной полярности. Она весьма мала в воздушной среде по сравнению с Fэ и достигает больших значений в жидкостях с высокой диэлектрической проницаемостью;
• механические силы, основными из которых являются сила гравитационного притяжения ,FГ центробежная сила Fц силы сопротивления среды Fс.
Силы молекулярного сцепления частиц между собой и с электродами, сила трения между частицами и электродом для частиц крупнее 0,1 мм, а также инерционные силы, действующие на завершающем этапе сепарации, сравнительно малы и обычно не учитываются.
Разделение различно заряженных частиц происходит в результате воздействия на них электрических и механических сил в рабочей зоне сепаратора. Соотношение сил и эффективность разделения при этом будут зависеть от различия электрических свойств разделяемых минералов, изменения напряженности электрического поля во времени (постоянное или переменное) и пространстве (однородное или переменное), наличия движущихся носителей заряда (ионов, электронов), вида среды разделения (газ или жидкость) и характера движения материала в рабочем пространстве электрических сепараторов.
В сепараторах с криволинейным транспортирующим электродом барабанного типа (рис. 6.1, а) процесс разделения минералов происходит в воздушной среде.
Рис. 6.1. Векторные диаграммы сил, действующих на частицы в сепараторах: а, б — барабанном электростатическом; в — плоскостном электростатическом; г — камерном электростатическом; д — диэлектрическом; 1 — положительно заряженная частица; 2 — отрицательно заряженная частица
Неоднородное электростатическое или электрическое поле постоянной полярности напряженностью до 10 кВ/см создается между барабаном и отстоящим от него на некотором расстоянии вторым электродом или системой электродов. Электрическая сила Fэ будет прижимать к барабану частицы, имеющие знак заряда, противоположный знаку полярности барабана, и отталкивать от него одноименно заряженные частицы. Сила зеркального отображения F3, направлена к центру барабана, удерживая частицы на его поверхности. Центробежная сила Fц, наоборот, стремится оторвать частицы от поверхности. Гравитационная сила Fг действует вертикально вниз, ее составляющие зависят от угла поворота барабана. Пондеромоторная сила Fп
направлена от центра барабана, поскольку диэлектрическая проницаемость минералов больше, чем воздуха, и концентрация силовых линий поля повышается в направлении ко второму электроду. Однако сила Fп, как и сила сопротивления воздушной среды Fс для зернистых частиц в рабочей зоне сепаратора, относительно невелика и их можно не учитывать.
Результирующая сила F, определяющая траекторию движения частиц в электрическом поле сепаратора, является векторной суммой основных взаимодействующих сил:
В сепараторах с плоским транспортирующим электродом (рис. 6.1, в) между ним и расположенным сверху вторым электродом или системой электродов создается электрическое или электростатическое поле напряженностью 2—4 кВ/см. Результирующая сила F, определяющая траекторию разделяемых частиц, складывается из электрической силы Fэ, силы зеркального отображения Fз, и гравитационной силы Fг, вызывающих движение частиц по плоскости и существенно влияющих на разделение минералов, резко различающихся по форме:
Силами Fс и Fп, как и в первом случае, можно пренебречь.
В камерных сепараторах (рис. 6.1, г) электростатическое поле постоянной полярности напряженностью 2 — 4 кВ/см создается между пластинчатыми электродами. Разделение частиц, обладающих различными зарядами, осуществляется в процессе их свободного падения между электродами. При этом движение частиц в горизонтальном направлении определяется в основном электрической силой Fэ, вызывающей притяжение частиц к противоположно заряженному электроду и отталкивание их от одноименного электрода. Сила F3 начинает проявляться только при приближении частиц к одному из них, поэтому, как и сила Fп, практически не влияет на их разделение. В вертикальном направлении на каждую частицу будут действовать разнонаправленные силы тяжести FГ и сопротивления среды Fп.
Разделение минералов в непроводящей жидкости в диэлектрических сепараторах (рис. 6.1, д) происходит в резко неоднородном электрическом поле переменной полярности напряженностью до 5 кВ/см. Определяющей процесс силой в этих условиях является пондеромоторная сила Fп . Под ее действием частицы с диэлектрической проницаемостью ε2, большей εс, втягиваются в область поля наибольшей напряженности у электрода с малым радиусом кривизны, тогда как частицы с ε2, меньшей εс, выталкиваются из этой области. Из механических сил влияют на разделение частиц силы тяжести FГ и сопротивления среды как в вертикальном Fс, так и горизонтальном, F'с направлении.
