- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
Гидравлические классификаторы с восходящим потоком пульпы используются в основном при классификации строительных материалов и для подготовки материала к гравитационному обогащению.
В классификаторе конструкции НИИЖелезобетона (рис. 2.8, а), используемом для получения песков при производстве бетона, питание подается сверху, навстречу восходящему потоку. Точность и эффективность классификации определяются производительностью. За рубежом для классификации строительных песков широко используется классификатор «Реакс» (рис. 2.8,б).
Исходная пульпа в нем подается в среднюю часть, а вода — с двух сторон тангенциально в грушевидную полость нижней части аппарата. Скорость восходящего потока по мере сужения аппарата постепенно увеличивается. Частицы, конечная скорость падения которых превышает скорость восходящего потока в зоне ввода пульпы, оседают и разгружаются через отверстие внизу классификатора. Мелкие частицы выносятся вверх и разгружаются со сливом. Недостатками классификаторов являются: высокий расход воды (до 10 м3 на 1 т), большая высота аппаратов (до 15 м) и получение только двух продуктов — песков и слива.
В гидравлических многокамерных классификаторах (рис. 2.8, в), предназначенных для подготовки материала к гравитационному обогащению, материал разделяется на несколько продуктов (фракций). Для этого в каждой камере устанавливается своя скорость восходящего потока, значение которой понижается в направлении к разгрузочному порогу аппарата. Многокамерные классификаторы изготовляются четырехкамерными (КГ-4), шестикамерными (КГ-6) и восьмикамерными (КГ-8). Они представляют собой (см. рис. 3.8, в) открытый желоб 1, в дно которого вмонтированы пирамидальные классификационные камеры 2 увеличивающего размера.
Рис. 2.8. Схемы гидравлических классификаторов:
а — конструкции НИИЖелезобетона; б — «Реакс»; в — многокамерного
Нижняя часть каждой камеры включает в себя классификационную трубу 4, перемешивающее устройство (1—2 об/мин) для разрыхления взвеси песков 3, камеру для тангенциального ввода воды 5 и разгрузочное устройство 6. Достоинствами их являются: высокая точность классификации, автоматическая разгрузка песков и возможность регулировки процесса классификации.
Для классификации в горизонтальном потоке используются отстойники различной конструкции (элеваторные, пирамидальные и др.), классифицирующие конусы (песковые и шламовые) и механические классификаторы (спиральные, реечные, чашевые, дражные и др.).
Наиболее простые из них элеваторные классификаторы (багер-зумпфы) применяют для предварительного обезвоживания мелкого концентрата и классификации его под действием силы тяжести по граничной крупности, равной примерно 0,5 мм; при этом пески удаляются из зумпфа элеватором (рис. 2.9, а).
Автоматические конусные классификаторы (рис. 2.9, б) используют для классификации зернистого материала (2—3 мм) при крупности разделения более 0,15 мм (в песковых конусах ККП) и шламистых материалов (менее 1 мм) при крупности разделения менее 0,15 мм (в шламовых конусах ККШ). Исходный продукт в них подается через центральную трубу, снабженную сеткой и успокоителем — рассекателем потока. Крупные зерна осаждаются, а тонкие частицы уходят в слив. При накоплении песков в конусе находящийся внутри него поплавок поднимается, открывая клапан разгрузочного отверстия. Элеваторные и конусные классификаторы работают обычно без подачи дополнительной воды и эффективность их работы невелика.
Рис. 2.9. Схемы багер-зумпфа (а), конусного (б) и спиральных классификаторов с непогруженной (в) и погруженной (г) спиралью
В механических классификаторах, наиболее часто используемых в циклах измельчения для получения в сливе готового по крупности продукта, направляемого на обогащение, пески удаляются шнеком (в спиральных классификаторах), бесконечной гребковой лентой со скребками или перфорированными черпаками (в дренажных классификаторах) или рамой с гребками, совершающей возвратно-поступательное движение (в реечных классификаторах). Получивший преимущественное распространение спиральный классификатор (рис. 2.9, в) состоит из наклонного под углом 12-16° полуцилиндрического корыта, в котором вращаются одна или две спирали из стальных полос.
Исходный материал подается под уровень находящейся в классификаторе пульпы; крупные зерна осаждаются и транспортируются вращающейся спиралью к верхнему концу корыта, а мелкие частицы уходят со сливом через сливной порог.
При крупности разделения 0,2 мм и выше применяют классификаторы с непогруженной спиралью (табл.2.1), в которых вся верхняя половина витка спирали выступает над зеркалом пульпы.
Таблица 2.1
Основные параметры классификаторов типа КСН (с непогруженной спиралью)
Показатели |
1-КСН-3 |
1-КСН-5 |
1-КСН-7,5 |
1-КСН-10 |
1-КСН-12 |
1-КСН-15 |
1-КСН-17 |
1-КСН-20 |
1-КСН-24 |
2-КСН-24 |
1-КСН-24А |
2-КСН-24А |
1-КСН-24Б |
1-КСН-30 |
2-КСН-30 |
Диметр спирали, мм |
300 |
500 |
750 |
1000 |
1200 |
1500 |
1700 |
2000 |
2400 |
3000 |
|||||
Длина спи- рали, мм |
3000 |
4500 |
5500 |
6500 |
6500 |
8200 |
8400 |
9200 |
12500 |
134 |
12500 |
||||
Количество спиралей, шт. |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
1 |
2 |
Частота |
25 |
12 |
7,8 |
5 |
4,1 |
3,4 |
2,5 |
2,0 |
1,8 |
3,5 |
- |
3,6 |
- |
1,5 |
3,0 |
вращения вала спирали, мин-1 |
|
|
|
|
8,3 |
6,8 |
5,0 |
4,0 |
|
|
|
|
|
|
|
Угол уста- новки, град. |
18 |
18 |
18 |
18 |
15 |
18,5 |
18 |
17 |
17 |
17 |
17 |
17 |
17 |
18,5 |
18,5 |
Мощность |
1,1 |
1,1 |
3,0 |
5,5 |
5,5 |
7,5 |
10,0 |
13,0 |
13?0 |
22,0 |
22,0 |
40,0 |
22,0 |
30,0 |
40,0 |
эл.двигат. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
привода спирали, кВт |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Масса, т |
0,8 |
1,5 |
3,0 |
5,0 |
7,0 |
13,0 |
17,0 |
19,0 |
23,0 |
37,0 |
34,0 |
57,0 |
39,0 |
42,0 |
70,0 |
Для получения более тонкого слива (более 65 % класса -0,074 мм) применяют классификаторы с погруженной спиралью (рис. 2.9, в, табл.2.2), в которых часть спирали у сливного порога целиком погружена в пульпу.
Таблица 2.2
Основные параметры классификаторов типа КСН (с погруженной спиралью)
Показатели |
1-КСП-12 |
2-КСП-12 |
1-КСП-15 |
2-КСП-15 |
1-КСП-17 |
1-КСП-20 |
2-КСП-20 |
1-КСП-24 |
2-КСП-24 |
1-КСП-30 |
Диметр спирали, мм |
1200 |
1200 |
1500 |
1500 |
1700 |
2000 |
2000 |
2400 |
2400 |
3000 |
Длина спирали, мм |
8400 |
8400 |
10100 |
10100 |
10100 |
13000 |
13000 |
14000 |
14000 |
15500 |
Количество спиралей, шт. |
1 |
2 |
1 |
2 |
1 |
1 |
2 |
1 |
2 |
1 |
Частота вращения вала спирали, мин-1 |
4,1 |
8,3 |
3,4 |
6,8 |
2,5 |
2,5 |
5,0 |
2,0 |
4,0 |
1,5 3,0 |
Угол установки, град. |
15-18 |
15-18 |
15-18 |
15-18 |
15 |
15 |
15 |
15 |
15 |
15 |
Мощность электродвигателя привода спирали, кВт |
5,5 |
10,0 |
7,5 |
10,1 |
- |
13,0 |
22,0 |
13,0 |
30,0 |
30,0 |
Масса, т |
10,5 |
17,0 |
19,0 |
32,0 |
25,0 |
31,0 |
56,0 |
35,0 |
63,5 |
60,0 |
Эффективность классификации составляет 35-65 %; регулирование крупности слива производят изменением плотности пульпы Т. По В.А. Олевскому, существует зависимость:
(3.29)
где β74— содержание в сливе класса -0,074 мм, %.
Выбранный к установке классификатор должен обеспечивать требуемую производительность по сливу и пескам. Производительность (в т/ч) по сливу классификаторов с непогруженной спиралью определяется по формуле []
где m – число спиралей; Kβ – крупность слива (табл.2,3); Kδ – плотность материала; Kс – заданная плотность слива (табл.2,4); Kα – угол наклона днища классификатора (табл.2,5); D – диаметр спиралей, м (табл.2,6).
Производительность (в т/ч) по пескам определяется по формуле
где n – частота вращения спиралей, мин-1; δ –плотность руды, т/м3.
Значения коэффициентов приведены в табл.2.3-2.6.
Таблица 2.3
Значения коэффициента Kβ учитывающего крупность слива классификатора
Показатели |
Номинальная крупность сливa d95, мм |
||||||||
|
1,17 |
0,83 |
0,59 |
0,42 |
0,30 |
0,21 |
0,15 |
0,10 |
0,074 |
Содержание в сливе классов, %: - 0,074 мм - 0,044 мм |
17 11 |
23 15 |
31 20 |
41 27 |
53 36 |
65 45 |
78 50 |
88 72 |
95 83 |
Базисное (условное) разжижение слива: Ж:Т по массе R2 твердого, % |
1,3 43 |
1,5 40 |
1,6 38 |
1,8 36 |
2,0 33 |
2,33 30 |
4,0 20 |
4,5 18 |
5,7 16,5 |
Коэффициент Kβ |
2,5 |
2,37 |
2,19 |
1,96 |
1,70 |
1,41 |
1,0 |
0,67 |
0,46 |
Таблица 2.4
Значения коэффициента Кс, учитывающего разжижение слива классификатора
Плотность руды δ, т/м3 |
Отношение RТ/R2,7 |
||||||
|
0,4 |
0,6 |
0,8 |
1,0 |
1,2 |
1,5 |
2,0 |
2,7 |
0,60 |
0,73 |
0,86 |
1,0 |
1,13 |
33 |
1,67 |
3,0 |
0,63 |
0,77 |
0,93 |
,07 |
1,23 |
,44 |
1,82 |
3,3 |
0,66 |
0,82 |
0,98 |
,15 |
1,31 |
,55 |
1,97 |
3,5 |
0,68 |
0,85 |
1,02 |
,20 |
1,37 |
,63 |
2,07 |
4,0 |
0,73 |
0,92 |
1,12 |
,32 |
1,52 |
1,81 |
2,32 |
4,5 |
0,78 |
1 ,00 |
1,22 |
,45 |
1,66 |
,99 |
2,56 |
5,0 |
0,83 |
1,07 |
1,32 |
,57 |
1,81 |
2,18 |
2,81 |
Таблица 2.5
Значения коэффициента, учитывающего угол наклона днища классификатора
α° |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Kα |
1,12 |
1,10 |
1,06 |
1,03 |
1,0 |
0,97 |
0,94 |
Таблица 2.6
Величины D1,765 и D3 для стандартных классификаторов
D, м |
0,3 |
0,5 |
0,75 |
1,0 |
1,2 |
1,5 |
2,0 |
2,4 |
3,0 |
D1,765 |
0,12 |
0,27 |
0,6 |
1,0 |
1,38 |
2,04 |
3,40 |
4,70 |
6,97 |
D3 |
0,027 |
0,111 |
0,422 |
1,0 |
1,73 |
3,38 |
8,0 |
13,62 |
27,0 |
Классификацию в центробежном поле осуществляют в гидроциклонах и воздушных сепараторах.
Гидроциклоны (рис. 2.10, а, б) широко используются при классификации тонкодисперсных материалов различных полезных ископаемых, особенно при их измельчении.
Рис. 2.10. Схемы гидроциклона (а), трехпродуктового гидроциклона (б) и центробежного воздушного сепаратора (в)
Из многочисленных конструкций гидроциклонов на рудообогатительных фабриках применяют главным образом цилиндроконические с углом конусности 20° и малых типоразмеров с углом конусности 10°. В условное обозначение входят слово «гидроциклон», угол конусности (если он отличается от 20°), буквенные обозначения материала рабочих поверхностей гидроциклонов, диаметр гидроциклона (в мм) и обозначение климатического исполнения (для стран с жарким климатом Т).
Пример: ГЦР-150, ГЦК-710, где Р - резина; К - каменное литьё.
Технологические характеристики гидроциклонов приведены в табл. 2.7.
При выборе и расчете гидроциклонов должны быть известны схемы измельчения и классификации, производительность мельницы по исходному питанию и её удельная производительность, циркулирующая нагрузка, характеристика крупности и содержание твердого в продукте измельчения, а также характеристики крупности продукта, поступающего в цикл измельчения.
Таблица 2.7
Основные параметры классифицирующих гидроциклонов
Диаметр гидроци-клона D, мм |
Угол конусно-сти α, град. |
Средняя производительность Vn, м3/ч (приР0=0,1МПа) |
Круп-ность слива dн (при ρт=2,7 г/см3) |
Стандартный эквивал. диаметр питающего отверстия dн, мм |
Стандартный диаметр сливного патрубка d, мм |
Диаметр песковой насадки Δ, мм |
15 |
10 |
0,15-0,3 |
- |
4 |
5 |
- |
25 |
10 |
0,45-0,9 |
- |
6 |
8 |
4-8 |
50 |
10 |
1,8-3,6 |
15 |
12 |
15 |
6-12 |
75 |
10 |
3-10 |
10-20 |
15-20 |
18-25 |
8-17 |
150 |
10,20 |
12-30 |
20-50 |
30-40 |
40-50 |
12-34 |
250 |
20 |
27-80 |
30-100 |
65 |
80 |
24-75 |
360 |
20 |
50-150 |
40-150 |
90 |
115 |
34-96 |
500 |
20 |
100-300 |
50-200 |
130 |
160 |
48-150 |
710 |
1400 |
200-500 |
60-250 |
150 |
200 |
48-200 |
20 |
20 |
360-1000 |
70-280 |
210 |
250 |
75-250 |
1000 |
2000 |
700-2000 |
80-300 |
300 |
380 |
150-300 |
20 |
20 |
1100-3800 |
90-330 |
400 |
520 |
250-500 |
Расчет гидроциклонов начинают с расчета количественной и шламовой схемы, т. е. с определения производительности каждого продукта по твердому, по количеству воды и пульпы. По условиям классификации предварительно выбирается гидроциклон определенного типоразмера (Д). Необходимое давление пульпы на входе в гидроциклон (P0) определяется по формуле [3,4]
где V— производительность, м3/ч;
Кα - поправка на угол конусности гидроциклона (α = 10°, Кα= 1,15; α= 20°,
Кα = 10);
КD- поправка на диаметр гидроциклона (табл.2.8);
dп- эквивалентный диаметр питающего отверстия, см;
d - диаметр сливного патрубка, см.
Таблица 2.8
Значения коэффициента К0для расчета гидроциклона
Диаметр гидроциклона D, см |
15 |
25 |
36 |
50 |
71 |
100 |
140 |
200 |
Поправочный коэффициент КD |
1,28 |
1,14 |
1,06 |
1,0 |
0,95 |
0,91 |
0,88 |
0,81 |
Высота гидроциклона, Hг„м |
- |
- |
- |
- |
3,5 |
4,5 |
6 |
8 |
Для гидроциклонов диаметром больше 500 мм необходимо учитывать высоту гидроциклона [3,4]:
(2.35)
где Рt- давление, создаваемое насосом на входе в гидроциклон, МПа;
Нг— высота гидроциклона, м;
ρп — плотность исходной пульпы, г/см3.
У выбранного типоразмера гидроциклона проверяется величина нагрузки на песковое отверстие и её соответствие норме (0,5-2,5 г/ч • см2) по формуле [3,4]
(2.36)
где Qп — производительность по пескам, т/ч;
Sn— площадь пескового отверстия, см2.
Проверка номинальной крупности dn слива гидроциклона производится по формуле [3,4]
(2.37)
где βптв - содержание твердого в исходной пульпе (табл.2.39), %;
Δ - диаметр пескового отверстия (насадка), см;
ρт и ρ — плотность твердой и жидкой фаз, г/см3.
Таблица 2.9
Зависимость содержания твердого в песках гидроциклона от крупности слива
Содержание класса -0,074 мм в сливе, βс-74, % |
50-60 |
60-70 |
70-80 |
80-85 |
85-90 |
90-95 |
95-100 |
Содержание твердого в песках, Βптв, % |
80 |
75 |
72 |
70 |
70 |
67 |
65 |
Разжижение песков Т:Ж |
0,25 |
0,33 |
0,39 |
0,43 |
0,43 |
0,49 |
0,54 |
Исходная пульпа под давлением от 5 до 50 Н/см2 (0,5— 5 кгс/см2) подается через патрубок тангенциально к внутренней поверхности цилиндрической части гидроциклона и приобретает в нем вращательное движение.
Тяжелые и крупные частицы под действием центробежной силы отбрасываются к стенкам аппарата и нисходящим спиральным потоком движутся вниз, разгружаясь через насадку для песков. Мелкие же частицы вместе с основной массой воды образуют внутренний поток, который поднимается вверх, и выносится через сливной патрубок.
Трехпродуктовый гидроциклон (см. рис. 2.10, б) имеет двойную сливную трубу. Крупность слива возрастает с увеличением плотности и вязкости исходного материала и с уменьшением диаметра песковой насадки. Большое влияние на эффективность разделения оказывает отношение диаметров песковой насадки и сливного патрубка, равное обычно 0,5-6,6. Диаметр сливного патрубка составляет 0,2-0,4 диаметра цилиндрической части гидроциклона, размер которой достигает 1500 мм. Для получения тонких сливов (менее 5-10 мкм) применяют батареи из гидроциклонов диаметром 15-100 мм, работающих при давлении пульпы на входе в гидроциклоны до 90 Н/см2 (9 кгс/см2). Преимуществами гидроциклонов являются простота конструкции, отсутствие движущих частей, малые размеры; недостатками — повышенный износ внутренней поверхности корпуса и насадок, для предотвращения чего их футеруют каменным литьем или гуммируют.
В центробежных воздушных сепараторах (рис. 2.10, в) вращающаяся тарелка разбрасывает исходный материал во внутренней камере. Крупные зерна оседают в воронке, а тонкий продукт выносится потоком воздуха и оседает во внешней камере. Крупность разделения регулируют скоростью воздушного потока.
