- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения 5
- •Тема 2. Классификация руд по крупности 31
- •Тема 3. Дробление и измельчение. 70
- •Тема 4. Гравитационное обогащение минерального сырья 125
- •Тема 5. Магнитные методы обогащения 188
- •Тема 6. Электрические методы обогащения 205
- •Тема 7. Радиометрические методы обогащения 227
- •Тема 8. Флотационные методы обогащения 249
- •Тема 9. Вспомогательные процессы и аппараты 277
- •10. Содержание дисциплины 316
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ 318
- •Тема 1. Цель и задачи обогащения минерального сырья. Методы обогащения, их физические и физико-химические основы. Показатели обогащения
- •1.1. Цель и задачи обогащения минерального сырья.
- •1.2. Методы обогащения, их физические и физико-химические основы.
- •1.2.1. Основные характеристики вещественного состава пи
- •1.2.1.1. Химический состав
- •1.2.1.2. Минералогический состав
- •1.2.1.3. Текстурные и структурные особенности
- •1.2.2. Физические свойства
- •1.2.3. Гранулометрический состав
- •1.2.4. Технологические свойства минералов
- •1.3. Классификация процессов обогащения полезных ископаемых
- •1.3.1. Подготовительные
- •1.3.2. Основные обогатительные процессы
- •1.3.3. Вспомогательные процессы обогащения и процессы производственного обслуживания
- •1.4. Показатели обогащения пи и их обогатимость
- •1.4.1. Технологические показатели
- •1.5.Технологические схемы обогащения
- •Тема 2. Классификация руд по крупности
- •2.1. Грохочение
- •2.1.1. Основные положения
- •2.1.2. Закономерности и эффективность грохочения
- •2.1.3. Просеивающие поверхности
- •2.1.4. Конструкции грохотов
- •2.2. Классификация процессов разделения по крупности
- •2.2.1. Закономерности свободного и стеснённого падения частиц в водной и воздушной средах.
- •2.2.2. Процесс классификации
- •2.2.3. Конструкции классификаторов. Гравитационные и центробежные классификаторы, воздушные сепараторы
- •Тема 3. Дробление и измельчение.
- •3.1. Назначение и классификация процессов дробления и измельчения
- •3.2. Теоретические основы дробления и измельчения
- •3.3 Технологическая эффективность дробления и энергетические показатели дробления
- •3.4 Схемы дробления, классификация машин для дробления и измельчения
- •3.4.1. Циркулирующая нагрузка в циклах дробления
- •3.4.2 Циркулирующая нагрузка в циклах измельчения
- •3.5. Типы и конструкции дробилок
- •3.5.1. Дробление в щековых дробилках
- •3.5.2. Дробление в конусных дробилках
- •Технологические параметры конусных дробилок среднего и мелкого дробления
- •3.5.3. Валковые дробилки.
- •3.5.4. Молотковые и роторные дробилки.
- •3.6 Измельчение
- •3.6.1. Мельницы
- •3.6.2. Расчет производительности мельниц.
- •Тема 4. Гравитационное обогащение минерального сырья
- •4.1. Отсадка
- •4.1.1. Поршневые отсадочные машины.
- •4.1.2. Диафрагмовые отсадочные машины.
- •4.1.3. Отсадочные машины с подвижным решетом.
- •Техническая характеристика отсадочной машины с трехсекционным подвижным решетом
- •4.1.4. Беспоршневые воздушно-золотниковые отсадочные машины.
- •4.1.5. Производительность отсадочных машин
- •4.1.6. Режим работы отсадочных машин
- •4.2. Обогащение в тяжелых средах
- •4.2.1. Конусные сепараторы
- •4.2.2. Барабанные сепараторы
- •4.2.3. Тяжелосредные циклоны
- •4.2.4. Производительность тяжелосредных сепараторов и циклонов.
- •4.2.5. Технология обогащения в тяжелых суспензиях.
- •4.3. Обогащение на концентрационных столах
- •4.4. Обогащение на концентрационных шлюзах и желобах
- •4.5. Винтовые сепараторы
- •4.6. Промывка
- •Тема 5. Магнитные методы обогащения
- •5.1. Физические основы магнитных методов обогащения
- •5.1.1. Сущность магнитных методов обогащения
- •5.1.2. Магнитные системы сепараторов
- •5.1.3. Режимы магнитной сепарации
- •5.1.4. Селективность магнитной сепарации
- •5.2. Классификация и общая характеристика магнитных сепараторов
- •Тема 6. Электрические методы обогащения
- •6.1. Физические основы электрических методов обогащения
- •6.1.1. Сущность электрических методов обогащения
- •6.1.2. Методы улучшения селективности электрической сепарации
- •6.2. Разделение минералов по электропроводности
- •6.2.1. Подготовка материала к электрической сепарации
- •6.2.2. Электрические сепараторы и принципы их работы
- •6.2.3. Основные факторы, влияющие на процесс электрической сепарации
- •6.3. Трибоэлектрическая сепарация
- •6.3.1. Общая характеристика трибоэлектрической сепарации
- •6.3.2. Способы электризации частиц при сепарации
- •6.3.3. Сепараторы и принципы их работы
- •6.4. Пироэлектрическая и диэлектрическая сепарация
- •6.4.1. Пироэлектрическая сепарация
- •6.4.2. Диэлектрическая сепарация
- •Тема 7. Радиометрические методы обогащения
- •7.1. Общая характеристика процессов радиометрического обогащения
- •7.2. Классификация радиометрических методов обогащения руд
- •7.2.1 Методы определения элементного состава полезных ископаемых по спектрометрии вторичных излучений
- •7.2.2 Методы определения естественной радиоактивности пород, содержащих радиоактивные элементы
- •7.2.3 Люминесцентный метод
- •7.2.4 Фотометрические методы
- •7.2.5 Радиоволновые методы
- •7.3. Технологические задачи, решаемые при использовании радиометрических методов
- •7.4. Радиометрические сепараторы и установки крупнопорционнойй сортировки руд
- •7.4.1. Радиометрические сепараторы
- •7.4.2. Установки для радиометрической крупнопорционной сортировки
- •Тема 8. Флотационные методы обогащения
- •8.1. Сущность и разновидности флотационных процессов разделения минералов
- •8.1.1. Зависимость смачиваемости поверхности минералов от значений удельных поверхностных энергий на границе соприкасающихся фаз
- •8.1.2. Условия закрепления частицы на межфазовой поверхности. Показатель флотируемости
- •8.1.3. Разновидности флотационных процессов разделения минералов
- •8.1.3.1. Разделение минералов на поверхности раздела жидкость — газ
- •8.1.3.2. Разделение минералов на поверхности раздела жидкость — жидкость
- •8.1.3.3. Флотационные процессы на поверхностях раздела твердое — жидкость и твердое — газ
- •8.2. Флотационные реагенты и их действие при флотации
- •8.2.1. Назначение и классификация флотационных реагентов
- •8.3. Флотационные машины и аппараты
- •8.3.1. Требования к современным конструкциям флотационных машин
- •8.3.2. Механические флотационные машины
- •8.3.3. Пневмомеханические флотационные машины
- •8.3.4. Пневматические флотационные машины
- •Тема 9. Вспомогательные процессы и аппараты
- •9.1. Обезвоживание продуктов обогащения
- •9.1.1. Назначение и общая характеристика процессов и продуктов обезвоживания
- •9.1.2. Дренирование
- •9.1.3. Сгущение
- •9.1.4. Фильтрование
- •9.1.5. Центрифугирование
- •9.1.6. Сушка
- •9.2. Пылеулавливание, очистка сточных и кондиционирование оборотных вод
- •9.2.1. Пылеулавливание
- •9.2.3. Очистка сточных и кондиционирование оборотных вод
- •10. Содержание дисциплины
- •12. Пылеулавливание.
- •13. Очистка сточных и кондиционирование оборотных вод
- •11. Учебно-методические указания для выполнения контрольно- расчетных работ
- •Тема 1. Определение технологических показателей обогащения:
- •Контрольные задания 1
- •Тема 2. Определить выход концентрата и хвостов, извлечение в них ценного компонента и эффективность обогащения по Ханкоку-Луйкену
- •Контрольные задания 2
- •Тема 3. Характеристики крупности по плюсу и минусу дроблёной руды по результатам её ситового анализа
- •Контрольные задания 3
- •Тема 4. Эффективность грохочения дроблёного продукта по классу меньше отверстий сита
- •Контрольные задания 4
- •Тема 5. Циркулирующая нагрузка
- •Контрольные вопросы к экзамену (зачету) по дисциплине "Основы обогащения полезных ископаемых"
- •Цель и задачи обогащения минерального сырья.
- •Цель и задачи обогащения минерального сырья.
- •Список использованной литературы
2.1.3. Просеивающие поверхности
В качестве рабочих просеивающих поверхностей в производственных условиях применяются колосниковые решетки, штампованные, литые и сварные решета, проволочные и резиновые сита (рис. 2.1).
Рис. 2.1. Просеивающие поверхности грохотов:
а — металлические щелевидные или колосниковые решетки (живое сечение 40-70%); б — сварные металлические решета (живое сечение 50-70%); в — металлические штампованные сита и решета (живое сечение 35-40%); г — тканые сита из металлической проволоки, синтетического волокна или комбинированные (живое сечение 40-60%); д — литые секционные резиновые или синтетические сита (живое сечение 40-70%); е — шпальтовые металлические сита (живое сечение 8-40%);
Просеивающие поверхности характеризуются коэффициентом живого сечения SС — отношением площади отверстий сита (площади живого сечения) к общей его площади. Сита с мелкими ячейками принято характеризовать их плотностью Кс, %, т. е. отношением площади, занимаемой проволокой, к общей площади сита:
(2.4)
В зависимости от величины Кс различают сита малой (до 25 %), нормальной (25-50%), большой (50-75%) и особенно большой (свыше 75 %) плотности, Чем меньше плотность сетки, тем больше ее живое сечение, выше эффективность грохочения и производительность, однако прочность и срок службы меньше, чем у сеток большей плотности.
Преимущественно для крупного, а также среднего грохочения (по крупности от 50 до 300 мм) применяются колосниковые решетки (рис. 2.1, а). Они набираются из колосников, параллельно скрепленных между собой со строго определенными зазорами, от величины которых зависит максимальный размер зерен подрешетного продукта. Ширина зазора между колосниками обычно бывает не менее 50 мм. Наилучшим профилем сечения колосников является трапециевидный, так как при прохождении через расширяющуюся щель зерна не заклиниваются в ней. Простота изготовления, повышенная прочность и большой срок службы колосниковых решеток обусловливают широкое их распространение, особенно при крупном грохочении.
Для среднего и мелкого грохочения (по крупности от 10 до 100 мм) применяют сварные (рис. 2.1, 6) и штампованные (рис. 2.1, в) решета, представляющие собой перфорированные листы. Круглые, овальные, квадратные, прямоугольные или щелевидные отверстия располагают в решете параллельными рядами, в шахматном порядке или «в елочку». Срок службы штампованных металлических решет составляет 4-6 месяцев. Для повышения долговечности их гуммируют или полностью изготовляют из резины или резиноподобных полимерных материалов. Например, при переработке абразивных горных пород применяют литые резиновые решета преимущественно с квадратными отверстиями размером от 15 до 35 мм. Срок их службы в 10-20 раз больше, по сравнению с металлическими. Основные преимущества перфорированных решет — жесткость и большой срок службы; основной недостаток — малое живое сечение, величина которого редко превышает 40 % .
Для мелкого и среднего грохочения наиболее часто применяют тканые, плетеные, шпальтовые и струнные сита.
Тканые и плетеные сита (рис. 2.1, г) изготовляют преимущественно с квадратными и прямоугольными отверстиями размером от 100 до 0,04 мм из стальной, бронзовой, медной или никелевой проволоки. В операциях мелкого грохочения используют сита из частично рифленой или сложно рифленой проволоки. Основными достоинствами проволочных сит, по сравнению с решетами, являются большое живое сечение их и малая масса. В последние годы все большее применение находят сита (рис. 2.1, д) из резины и различных полимерных материалов (например, капроновые, капросталевые, резиновые, полиуретановые и другие сита), срок службы которых в несколько раз больше металлических.
При мелком и иногда тонком грохочении широко применяют шпалътовые сита (рис. 2.1, е), представляющие собой щелевидные сита, набираемые из проволоки круглого или стержневого трапециевидного сечения с шириной щелевидных отверстий в свету от 0,25 до 16 мм. Шпальтовые сита изготовляют обычно из нержавеющей стали, и срок службы их составляет 2-3 месяца.
При грохочении материалов с содержанием значительного количества глинистого материала повышенной влажности находят применение струнные сита, просеивающая поверхность которых образуется из стальной проволоки или резиновых нитей, натянутых по всей длине грохота. Постоянство размеров щелей просеивающей поверхности обеспечивается установкой поперечных резиновых гребенчатых планок или промежуточных стержней.
Для рассева материалов с повышенной влажностью производят также ряд сит специальных конструкций. Эффективность рассева на них достигается в основном вследствие самоочистки ячеек при колебаниях элементов сита относительно друг друга. Сита могут быть набраны, например, из расположенных в одной плоскости двух проволочных систем, независимых друг от друга, но скрепленных между собой виброэлементами из резинометаллического соединения. Свободные колебания проволок и систем относительно друг друга предотвращают залипание просеивающей поверхности.
