
- •Курс лекций по дисциплине «Системный анализ и принятие решений»
- •Раздел 1 Концептуальные основы изучения дисциплины «Системный анализ и принятие решений"
- •Тема 1.1 Исследования и их роль в практической деятельности человека
- •Тема 1.2 История развития теории систем и системного анализа
- •Тема 1.3 Значение системного анализа
- •Раздел 2 Понятие системы. Виды систем и их свойства
- •Тема 2.1 Понятие системы. Ее компоненты. Свойства систем
- •Тема 2.2 Классификация систем
- •Раздел 3 Системы управления как объект системного анализа
- •Тема 3.1 Системный подход в управлении
- •Тема 3.1 Целевая модель систем управления в контексте системного анализа
- •Графические способы функционального описания систем
- •Раздел 4 Системный анализ как научный процесс
- •Тема 4.1 Понятие анализа. Общая схема анализа системы.
- •Тема 4.2 Подходы к анализу и проектированию систем
- •Тема 4.3 Основные процедуры системного анализа
- •Раздел 5 Логика и методология системного анализа
- •Тема 5.1 Специфика логики системного анализа
- •Тема 5.2 Понятие «методология»
- •Раздел 6 Социально-экономическое экспериментирование и экспертные оценки в управлении организационными системами
- •Тема 6.1 Эксперимент
- •Тема 6.2 Принципы экспериментирования
- •Тема 6.3 Деловые игры
- •Стратегическое наступление
- •Раздел 7 Социологические методы исследования систем управления
- •Тема 7.1 Виды социологических исследований
- •Программа социологического исследования
- •3. Классификация методов социологического исследования
- •Классификация методов социологического исследования
- •Тема 7.2 Принципы кодирования закрытых вопросов
- •Тема 7.3 Характеристика прогностических моделей
- •Раздел 8 Параметрическое исследование и факторный анализ систем управления
- •Тема 8.1 Постановка параметрических исследований
- •Тема 8.2 Элементы внутренней среды организации
- •Тема 8.3 Модель внешней среды организации Понятие «внешняя среда организации».
- •Характеристики внешней среды
- •Раздел 9 Диагностика систем управления
- •Тема 9.1 Организационная диагностика
- •Тема 9.2 Организационные патологии и их виды
- •Тема 9.3 Систематизация методов диагностики
Тема 2.2 Классификация систем
По различным признакам системы разделяют на классы. Цель любой классификации – ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы системного анализа и дать рекомендации по выбору методов для соответствующего класса систем. При этом система, в принципе, может быть одновременно охарактеризована несколькими признаками, т.е. ей может быть найдено место одновременно в разных классификациях, каждая из которых может оказаться полезной при выборе методов моделирования. Рассмотрим некоторые из наиболее важных классификаций систем. ^ Открытые и закрытые системы. Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются (разумеется, с точностью до принятой чувствительности модели) полностью лишенными этой способности, т.е. изолированными от среды. ^ Целенаправленные системы. При изучении экономических, организационных объектов важно выделять класс целенаправленных систем. В этом классе, в свою очередь, можно выделить системы, в которых цели задаются извне (обычно это имеет место в закрытых системах), и системы, в которых цели формируются внутри системы (что характерно для открытых систем). ^ Классификации систем по сложности. Существует несколько подходов к разделению систем по сложности. Так, некоторые исследователи связывали сложность с числом элементов. Например, Г.Н. Поваров в зависимости от числа элементов, входящих в систему, выделяет четыре класса систем
малые системы (10-103 элементов);
сложные (104-106 элементов);
ультрасложные (107-1030 элементов);
суперсистемы (1030-10200 элементов).
Одна из наиболее полных и интересных классификаций по уровням сложности предложена К. Боулдингом [7]. Выделенные в ней уровни приведены в следующей таблице:
Тип системы |
Уровень сложности |
Примеры |
Неживые системы |
Статические структуры |
Кристаллы |
Простые динамические структуры с заданным законом поведения |
Часовой механизм |
|
Кибернетические системы с управляемыми циклами связи |
Термостат |
|
Живые системы |
Открытые системы с самосохраняемой структурой |
Клетки |
Живые организмы с низкой способностью воспринимать информацию |
Растения |
|
Живые организмы с более развитой способностью воспринимать информацию, но не обладающие самосознанием |
Животные |
|
Системы, характеризующиеся самосознанием, мышлением и нетривиальным поведением |
Люди |
|
Социальные системы Трансцендентные системы или системы, лежащие в настоящий момент вне нашего познания |
Социальные организации |
^ Классификация систем по степени организованности. В работе [10] предлагается разделение систем по степени организованности на хорошо организованные, плохо организованные и самоорганизующиеся. Кратко охарактеризуем эти классы. 1. Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей. На представлении этим классом систем основано большинство моделей физических процессов и технических систем. Однако для сложных объектов формирование таких моделей существенно зависит от лица, принимающего решения. Например, работу сложного механизма приходится отображать в виде упрощенной схемы или системы уравнений, учитывающих не все, но наиболее существенные с точки зрения автора модели и назначения механизма (цели его создания), элементы и связи между ними. Атом может быть представлен в виде планетарной модели, состоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы. Иными словами, для отображения сложного объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать компоненты, относительно несущественные для конкретной цели рассмотрения, а при необходимости более детального описания нужно уточнить цель, указав с какой степенью глубины нас интересует исследуемый объект, и построить новую (отображающую его) систему с учетом уточненной цели. Например, при описании атома можно учесть протоны, нейтроны, мезоны и другие микрочастицы, не рассматриваемые в планетарной модели системы. При исследовании сложного радиоэлектронного устройства после предварительного его отображения с помощью обобщенной блок-схемы разрабатывают принципиальную схему, проводят соответствующие расчеты для определения номиналов элементов, входящих в нее и реализующих необходимый режим ее функционирования, и т. д. При представлении объекта в виде хорошо организованной системы задачи выбора целей и определения средств их достижения (элементов, связей) не разделяются. Проблемная ситуация может быть описана в виде выражений, связывающих цель со средствами (т.е. в виде критерия функционирования, критерия или показателя эффективности, целевой функции и т.п.), которые могут быть представлены уравнением, формулой, системой уравнений или сложных математических моделей, включающих и уравнения, и неравенства и т.п. При этом иногда говорят, что цель представляется в виде критерия функционирования или эффективности, в то время как в подобных выражениях объединены и цель, и средства. Представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т.е. экспериментально доказана адекватность модели реальному объекту или процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач, которые приходится решать при разработке технических комплексов, совершенствовании управления предприятиями и организациями и т.д., практически безрезультатны: это не только требует недопустимо больших затрат времени на формирование модели, но часто нереализуемо, так как не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, характеризуемыми далее. 2. При представлении объекта в виде плохо организованной системы не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования не всего объекта или класса явлений, а путем изучения определенной с помощью некоторых правил достаточно представительной выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого, выборочного, исследования получают характеристики или закономерности (статистические, экономические и т. п.), и распространяют эти закономерности на поведение системы в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение системы с какой-то вероятностью, которая оценивается с помощью специальных приемов, изучаемых математической статистикой. Отображение объектов в виде плохо организованных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например, ремонтных цехах предприятия и в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания), при исследовании документальных потоков информации и т. д. 3. Отображение объектов в виде самоорганизующихся систем позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи. Класс самоорганизующихся систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам:
Особенность |
Краткая характеристика |
1 |
2 |
Нестацuонарностьпараметров и стохастuчностьповедения |
Эта особенность легко интерпретируется для любых систем с активными элементами (живых организмов, социальных организаций и т.п.), обусловливая стохастичность их поведения |
^ Уникальность и непредсказуемостьповедения системы в конкретных условиях |
Эти свойства проявляются у системы, благодаря наличию в ней активных элементов, в результате чего у системы как бы проявляется «свобода воли», но в то же время имеет место и наличиепредельных возможностей,определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями |
Способность адаптироваться к изменяющимся условиям среды и помехам |
Это свойство, казалось бы, является весьма полезным. Однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой |
^ Принципиальная неравновесность |
Все большее подтверждение в современных исследованиях находит гипотеза биологов о том, что живое принципиально находится в неравновесном состоянии, и более того – использует свою энергию для поддержания себя в неравновесном состоянии (которое и является собственно жизнью). При этом возникают проблемы сохранения устойчивости системы |
Способность противостоять разрушающим систему тенденциям |
Обусловлена наличием активных элементов, стимулирующих обмен материальными, энергетическими и информационными продуктами со средой и проявляющих собственные «инициативы», активное начало. Благодаря этому в таких системах наблюдаются процессы самоорганизации и развития |
Способность вырабатывать варианты поведения и изменять свою структуру |
Это свойство может обеспечиваться с помощью различных методов, позволяющих формировать разнообразные модели вариантов принятия решений, сохраняя при этом целостность и основные свойства |
Способность и стремление кцелеобразованию |
В отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы |
Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить, выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элементами занимаются философы, психологи, специалисты по теории систем, которые для объяснения этих особенностей предлагают и исследуют закономерности систем. Основные изученные к настоящему времени закономерности функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующей лекции.