- •Read text 1a and translate it
- •Find 20 new terms in text 1a and learn them
- •Read text 1b and translate it Text 1b other types of power plants
- •Read text 1b and explain the difference between the internal-combustion-engine power plant, the gas−turbine power plant and the nuclear power plant.
- •Read about different types of power stations ( https://en.Wikipedia.Org/wiki/Power_station) and make a scheme showing their classification.
- •Chapter II
- •Read text 2a and translate it Text 2a burning equipment
- •Find 20 new terms in text 2a and learn them
- •Read text 2b and translate it Text 2b furnaces
- •Read text 2b and answer the questions:
- •What are 3 major types of furnaces? Find the information in the Internet.
- •Read text 2c and translate it Text 2c cyclone furnace (crushed coal) and pulverized coal furnace
- •Find 20 new terms in text 2a and learn them
- •Read text 2b and translate it Text 2d gas burner
- •Read text 2d and fill in the gaps with the words below. Then tell about the work of gas burner.
- •What are flame temperatures of common gases and fuels used in industry? Draw a table. Find the information in the Internet.
- •Read text 2e and translate it Text 2e stokers
- •Find 20 new terms in text 2e and learn them
- •Read text 2f and translate it Text 2f chain- and travelling-grate stokers
- •Read text 2f and fill in the gaps with the sentences below.
- •Tell about the work of a stoker.
- •Chapter III
- •Read text 3a and translate it Text 3a heat transfer and steam generation
- •Find 20 new terms in text 3a and learn them
- •Read text 3b and translate it Text 3b boilers
- •Read text 3b and compare fire-tube boilers and water-tube boilers.
- •Read about different types of fire−tube boilers (http://en.Wikipedia.Org/wiki/Fire-tube_boiler) and make a scheme showing their classification.
- •Read text 3c and translate it. Text 3с the two-drum water-tube boiler and the bent-tube boiler
- •Find 20 new terms in text 3c and learn them
- •Read text 3d and translate it Text 3d the horizontal straight tube boiler and the horizontal-return tubular boiler
- •Read text 3d and fill in the gaps with the sentences below.
- •Tell about the work of horizontal boilers.
- •Chapter IV
- •Read text 4a and translate it Text 4a superheaters
- •Find 20 new terms in text 4a and learn them
- •Read text 4b and translate it Text 4b economizers
- •Read text 4b and correct the mistakes. Translate the sentences.
- •Tell about the work of economizer looking at the picture.
- •Read text 4c and translate it Text 4 c types of economizers
- •Find 20 new terms in text 4c and learn them
- •Read text 4d and translate it Text 4d the air heater and air preheaters
- •Read text 4d and fill in the gaps with the sentences below
- •What is the construction of the air heater? How does it work? Describe the types of industrial air heaters
- •Read text 4e and translate it Text 4e the steam-generating units
- •Find 20 new terms in text 4c and learn them
- •Read text 4f and translate it Text 4f high−capacity, high efficiency steam generating units
- •Read text 4f and say if the sentences are true or false.
- •What steam generating units are used in modern industry? Tell about them.
- •Chapter V
- •Read text 5a and translate it Text 5a heat exchangers
- •Find 20 new terms in text 5a and learn them
- •Read text 5b and translate it Text 5b condensers
- •Read text 5b and fill in the gaps with the words and word combinations.
- •What fluid−cooled types of condensers do you know? Find information http://en.Wikipedia.Org/wiki/Condenser_(laboratory)#Fluid-cooled_types? Tell about them.
- •Chapter VI
- •Read text 6a and translate it Text 6a turbines
- •Find 20 new terms in text 6a and learn them
- •Read text 6b and translate it Text 6b types of turbines
- •Find 20 new terms in text 6b and learn them
- •Read text 6c and translate it Text 6c further classification of turbines
- •Read text 6c and say if the sentences are true or false.
- •Where each type of turbines is used in industry?
- •Read text 6d and translate it Text 6d choice of type
- •Read text 6d and say if the sentences are true or false.
- •What are the advantages and disadvantages of different types of turbines?
- •Chapter VII
- •Read text 7a and translate it Text 7a pump types
- •Find 20 new terms in text 7a and learn them
- •Read text 7b and translate it Text 7b mechanical draft
- •Read text 7b and match the parts of the sentences
- •Speak about the role of the fans and blowers in power-plant engineering.
- •Read text 7c and translate it Text 7c fans and blowers
- •Find 20 new terms in text 7c and learn them
- •Read text 7d and translate it Text 7d centrifugal compressors
- •Read text 7d and fill in the gaps.
- •Speak about compressors and their advantages.
- •Chapter VIII
- •Read text 8a and translate it Text 8a power-plant cycles. The rankine cycle
- •Find 20 new terms in text 8a and learn them
- •Read text 8b and translate it Text 8b the simple, open, gas-turbine power cycle
- •Translate paragraph 2 in written form.
- •Describe gas−turbine power cycle.
- •Historical notes
- •Список устойчивых сочетаний
- •Список сокращений
- •Англо-русский словарь
Find 20 new terms in text 6b and learn them
Read text 6c and translate it Text 6c further classification of turbines
As the output capacities and working conditions have affected the construction of each particular make it has been suggested that the following particulars be given for each turbine: 1) number of shafts, 2) number of cylinders, 3) number of exhausts, 4) the speed.
Many types of industrial turbines are in use today, depending upon the conditions under which they must operate. They are classified as high-or-low-pressure turbines, according to the inlet pressure of the steam, and as superposed, condensing, and noncondensing turbines, according to the exhaust steam pressure. A superposed or high backpressure turbine is one that exhausts to pressures well above atmospheric pressure, 100 to 600 psi. A superposed turbine operates in series with a medium-pressure turbine. The exhaust steam of the superposed turbine drives the medium-pressure unit. The noncondensing turbine has lower exhaust pressures, but the steam still leaves at atmospheric pressure or above 15 to 50 psi. The exhaust steam may be used for drying or, heating processes.
The condensing turbine operates at exhaust pressures below atmospheric pressure and requires two auxiliaries: a condenser and a pump. The condenser reduces the exhaust steam to water. As the steam is condensed and the water is removed by a pump, a partial vacuum is formed in the exhaust chamber of the turbine. This type of turbine is used chiefly for the low-cost electric power it produces.
If steam is required for processing, a turbine may be modified by extracting or bleeding the steam.
Extraction takes place at one more point between inlet and exhaust, depending upon the pressures needed for the processes. The extraction maybe automatic or nonautomatic. Generally, factory processes require steam at a specific pressure, in the case, and automatic-extraction turbine is necessary. When steam is needed within the power plant itself for heating boiler feed-water, nonautomatic extraction is generally used.
Turbines may be classified according to their speed and size. Small turbines, varying in size from a few horsepower to several thousand horsepower, are used to drive fans, pumps, and other auxiliary equipment directly. The speed of these units is adjusted to the speed of the driven machinery or is converted by a suitable gear arrangement. These turbines are used wherever steam is readily available at low cost or where exhaust steam is needed.
Turbines for the production of electric power range in size from small units to those of over 500,000 kw, and the trend is toward even larger units.
Sometimes turbogenerator units are constructed to operate at 3.600 or 1,800 rpm. The selection of the speed depends almost entirely on the size of the turbogenerator desired. The speed of 3,600 rpm is preferred whenever the size of the turbine permits. The turbine operating at the higher speed has the following advantages: lighter weight, more compactness, and great suitability for high-pressure, high-temperature operation.
With a few exceptions turbines larger than 100,000 kw will operate at 1,800 rpm. All turbines of smaller capacity will run at 3,600 rpm. However, because of the advantages of the 3,600 rpm unit and because of the greater efficiency of large units turbine manufacturers will continue to raise the upper limit of speed and capacity.
Generally, turbogenerators on a, single shaft and within a given speed range are constructed with either a single or a double-rotor.
The double-rotor arrangement is used for only the largest turbines falling within a given speed range. A double-rotor unit is called a tandem-compound turbine, and the flow is double-exhaust to accommodate the large volumes of steam occurring at the low-pressure end.
