- •Read text 1a and translate it
- •Find 20 new terms in text 1a and learn them
- •Read text 1b and translate it Text 1b other types of power plants
- •Read text 1b and explain the difference between the internal-combustion-engine power plant, the gas−turbine power plant and the nuclear power plant.
- •Read about different types of power stations ( https://en.Wikipedia.Org/wiki/Power_station) and make a scheme showing their classification.
- •Chapter II
- •Read text 2a and translate it Text 2a burning equipment
- •Find 20 new terms in text 2a and learn them
- •Read text 2b and translate it Text 2b furnaces
- •Read text 2b and answer the questions:
- •What are 3 major types of furnaces? Find the information in the Internet.
- •Read text 2c and translate it Text 2c cyclone furnace (crushed coal) and pulverized coal furnace
- •Find 20 new terms in text 2a and learn them
- •Read text 2b and translate it Text 2d gas burner
- •Read text 2d and fill in the gaps with the words below. Then tell about the work of gas burner.
- •What are flame temperatures of common gases and fuels used in industry? Draw a table. Find the information in the Internet.
- •Read text 2e and translate it Text 2e stokers
- •Find 20 new terms in text 2e and learn them
- •Read text 2f and translate it Text 2f chain- and travelling-grate stokers
- •Read text 2f and fill in the gaps with the sentences below.
- •Tell about the work of a stoker.
- •Chapter III
- •Read text 3a and translate it Text 3a heat transfer and steam generation
- •Find 20 new terms in text 3a and learn them
- •Read text 3b and translate it Text 3b boilers
- •Read text 3b and compare fire-tube boilers and water-tube boilers.
- •Read about different types of fire−tube boilers (http://en.Wikipedia.Org/wiki/Fire-tube_boiler) and make a scheme showing their classification.
- •Read text 3c and translate it. Text 3с the two-drum water-tube boiler and the bent-tube boiler
- •Find 20 new terms in text 3c and learn them
- •Read text 3d and translate it Text 3d the horizontal straight tube boiler and the horizontal-return tubular boiler
- •Read text 3d and fill in the gaps with the sentences below.
- •Tell about the work of horizontal boilers.
- •Chapter IV
- •Read text 4a and translate it Text 4a superheaters
- •Find 20 new terms in text 4a and learn them
- •Read text 4b and translate it Text 4b economizers
- •Read text 4b and correct the mistakes. Translate the sentences.
- •Tell about the work of economizer looking at the picture.
- •Read text 4c and translate it Text 4 c types of economizers
- •Find 20 new terms in text 4c and learn them
- •Read text 4d and translate it Text 4d the air heater and air preheaters
- •Read text 4d and fill in the gaps with the sentences below
- •What is the construction of the air heater? How does it work? Describe the types of industrial air heaters
- •Read text 4e and translate it Text 4e the steam-generating units
- •Find 20 new terms in text 4c and learn them
- •Read text 4f and translate it Text 4f high−capacity, high efficiency steam generating units
- •Read text 4f and say if the sentences are true or false.
- •What steam generating units are used in modern industry? Tell about them.
- •Chapter V
- •Read text 5a and translate it Text 5a heat exchangers
- •Find 20 new terms in text 5a and learn them
- •Read text 5b and translate it Text 5b condensers
- •Read text 5b and fill in the gaps with the words and word combinations.
- •What fluid−cooled types of condensers do you know? Find information http://en.Wikipedia.Org/wiki/Condenser_(laboratory)#Fluid-cooled_types? Tell about them.
- •Chapter VI
- •Read text 6a and translate it Text 6a turbines
- •Find 20 new terms in text 6a and learn them
- •Read text 6b and translate it Text 6b types of turbines
- •Find 20 new terms in text 6b and learn them
- •Read text 6c and translate it Text 6c further classification of turbines
- •Read text 6c and say if the sentences are true or false.
- •Where each type of turbines is used in industry?
- •Read text 6d and translate it Text 6d choice of type
- •Read text 6d and say if the sentences are true or false.
- •What are the advantages and disadvantages of different types of turbines?
- •Chapter VII
- •Read text 7a and translate it Text 7a pump types
- •Find 20 new terms in text 7a and learn them
- •Read text 7b and translate it Text 7b mechanical draft
- •Read text 7b and match the parts of the sentences
- •Speak about the role of the fans and blowers in power-plant engineering.
- •Read text 7c and translate it Text 7c fans and blowers
- •Find 20 new terms in text 7c and learn them
- •Read text 7d and translate it Text 7d centrifugal compressors
- •Read text 7d and fill in the gaps.
- •Speak about compressors and their advantages.
- •Chapter VIII
- •Read text 8a and translate it Text 8a power-plant cycles. The rankine cycle
- •Find 20 new terms in text 8a and learn them
- •Read text 8b and translate it Text 8b the simple, open, gas-turbine power cycle
- •Translate paragraph 2 in written form.
- •Describe gas−turbine power cycle.
- •Historical notes
- •Список устойчивых сочетаний
- •Список сокращений
- •Англо-русский словарь
Find 20 new terms in text 4a and learn them
Read text 4b and translate it Text 4b economizers
The largest loss that occurs when fuel is burned for steam generation is the so-called "sensible heat" carried away in the hot flue gas. The efficiency of a steam-generating unit provided with good fuel-burning equipment is a function of .the flue-gas temperature.
Theoretically, the minimum temperature to which the products of combustion may be cooled is the temperature of the heat-transfer surface with which they are last in contact. In the conventional boiler the theoretical minimum flue-gas temperature would be the saturation temperature of the water in the boiler tubes. The relative amount of boiler heat-transfer surface required to cool the products of combustion from 1500° F to lower temperatures is based on saturated water in the boiler tubes at 1000 psi. It will be noted that, as the temperature difference decreases, each increment of added surface becomes less effective and that the amount of surface required to cool the gases from 700° to 600° F is about 60 per cent of that required to cool the gases from 1500° to 700° F.
In general, it is not economical to install sufficient boiler surface to cool the gases to within less than 1500F of the saturation temperature of the water in the tubes, because sufficient heat cannot be transmitted to the tubes at such low temperature difference to pay for the cost of the boiler surface.
The gases must be cooled from the boiler exit-gas temperature to the flue-gas temperature required for high efficiency by means of heat exchangers supplied with fluids at temperatures less than the saturation temperature at the boiler pressure. This can be done in an air heater supplied with the air required for combustion at room temperature or in an economizer supplied with ,boiler feedwater at a temperature considerably below the saturation temperature, or both. In many installations, it is economical to install a small boiler and a large economizer and air heater and to deliver the gases to the economizer at temperatures as high as 900° F rather than to cool the gases to lower temperatures by a larger boiler.
In a typical economizer feedwater is supplied to the inlet header from which it flows through a number of parallel circuits of 2 in. o.d. tubes11 of considerable length to the discharge header. If the inlet header is at the bottom so that the water rises as it flows from tube to tube, the hot gas normally enters at the top and flows downward. Thus the coldest gas will be in contact with the coldest tubes, and it is possible to cool the gas to within 125° to 150° F of the temperature of the inlet water if sufficient surface is installed.
Since the economizer has water in the tube and a dry gas around the tube, the major resistance to heat transfer is on the gas side. In order to increase the surface exposed to the gas per linear foot of tube and thus increase the effectiveness of the tubular surface, the economizer has fins welded to the top and bottom of each tube. This increases the surface available for heat transfer from the gas without substantially increasing the pressure drop of the gas as it flows across the surface. The gas flows at right angles to the tubes, and the 2-in. finned tubes are staggered to promote effective scrubbing of the outside surface by the gas so as to improve the overall heat-transfer coefficient.
Where scale-free feedwater is available or acid cleaning of heat transfer surfaces is used to remove scale, the flanged return bends may be eliminated. The flow circuits then consist of continuous welded tubing between inlet and outlet headers.
