Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12. Мех. оборуд. тепловозов. 200 стр..doc
Скачиваний:
12
Добавлен:
01.07.2025
Размер:
29.12 Mб
Скачать

74 Тема. Наддув дизелей. Турбокомпрессоры дизелей пд1м, k6s310dr.

На современных мощных четырехтактных и двухтактных дизелях применяется наддув для повышения мощности и тепловой экономичности. Сущность наддува состоит в том, что воздух в цилиндры дизеля не засасывается из атмосферы, а нагнетается турбокомпрессором или нагнетателем, приводимым от вала двигателя. Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что одновременно позволяет также подавать в цилиндры и сжигать большее количество топлива, а следовательно, получать при тех же размерах цилиндров и той же частоте вращения вала дизеля большую мощность. Установлено, что мощность дизеля возрастает примерно пропорционально давлению наддувочного воздуха. Таким образом, наддув позволяет почти при тех же размерах и массе двигателя увеличить его мощность в 2—3 раза.

При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что в значительной степени уменьшает воздушный заряд в цилиндре. Поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры. Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3—4 % и снижение удельного расхода топлива примерно на 1,5—2 г/(кВт-ч).

Экономичность дизелей с наддувом повышается вследствие увеличения механического КПД и дополнительного использования тепла отработавших газов. Давления сжатия и сгорания в цилиндре также возрастают. Температура же горения и тепловая напряженность дизеля остаются почти неизменными.

Существуют три способа наддува дизелей: 1 - нагнетателем, имеющим привод от вала дизеля (механический наддув); 2- газотурбинный; 3 - комбинированный.

Механический наддув. Нагнетатель 5 (рис. 185) приводится во вращение через редуктор 6 от коленчатого вала. Воздух засасывается нагнетателем из атмосферы и через впускной клапан 4 нагнетается в цилиндр. Недостаток такого способа наддува состоит в том, что количество подаваемого в цилиндр воздуха зависит от частоты вращения вала дизеля, а не от нагрузки, т. е. подача воздуха в цилиндр при данной частоте вращения вала будет одинакова на холостом ходу и при полной нагрузке. Так осуществляется воздухоснабжение в дизеле 2Д100.

Рис. 185. Схема наддува дизеля с механическим приводом воздушного нагнетателя: Рис. 186.

1 - цилиндр дизеля; 2 - поршень; 3 - клапан выпускной; 4 - клапан впускной; 5 - нагнетатель центробежный, 6 - редуктор.

Рис. 186. Схема дизеля с газотурбинным наддувом

1 - турбина газовая; 2 - нагнетатель центробежный 3 - клапан впускной; 4 - клапан выпускной; 5 - цилиндр; 6 – поршень.

Для правильной же организации рабочего процесса дизеля необходимо, чтобы под нагрузкой подавалось воздуха больше, чем на холостом ходу. Это особенно важно для тепловозных двигателей. Кроме того, на привод нагнетателя при этом способе наддува расходуется часть полезной мощности дизеля, поэтому экономичность двигателя повышается мало.

Газотурбинный наддув. В четырехтактном дизеле с газотурбинным наддувом (рис. 186) отработавшие газы, пройдя выпускной клапан 4, поступают на газовое колесо турбины 1 совершив работу, выбрасываются в атмосферу. На одном валу с турбиной находится крыльчатка центробежного нагнетателя 2, который забирает воздух из атмосферы, сжимает его до давления рк и через впускной клапан 3 нагнетает в цилиндр.

При газотурбинном наддуве количество воздуха, подаваемого в цилиндры, будет тем больше, чем больше внешняя нагрузка на дизель, так как в этом случае через турбину пройдет большее количество отработавших газов, имеющих более высокую температуру; частота вращения ее увеличится, а следовательно, возрастет и подача нагнетателя. Это свойство дизеля с газотурбинным наддувом для тепловозов особенно ценно, так как этим достигается «саморегулирование» дизеля. Кроме того, при газотурбинном наддуве благодаря дополнительному использованию тепла отработавших газов повышается коэффициент полезного действия двигателя. Газотурбинный наддув применен в четырехтактных тепловозных дизелях типов Д70, Д49, ПД1М, М756, КбSЗ10DR..

Комбинированный наддув. Комбинированный (двухступенчатый) наддув (рис. 187) применяется в двухтактных дизелях в том случае, когда воздух необходимо сжать до сравнительно высокого давления (0,2-0,3) МПа. Одного нагнетателя 5, приводимого от газовой турбины, оказывается недостаточно для обеспечения дизеля воздухом требуемых параметров, особенно на пониженных нагрузках, так как температура выпускных газов перед турбиной у двухтактного дизеля ниже, чем у четырехтактного, вследствие интенсивной продувки цилиндров воздухом. Поэтому в двухтактных дизелях применяют вторую ступень сжатия воздуха в нагнетателе 7, который имеет механический привод (через редуктор 8) от вала двигателя. При сжатии в первой ступени (турбонагнетателе) воздух нагревается до высокой температуры (100— 150°С), что уменьшает воздушный за ряд цилиндра и, следовательно, мощность и экономичность дизеля. Чтобы избежать этого, после нагнетателя 5 воздух направляется в охладитель 6, где он охлаждается до 50—60 °С.

При работе под нагрузкой газовая турбина 4 вращает колесо нагнетателя 5 с большой частотой (15 000— 20 000 об/мин), вследствие чего нагнетатель засасывает воздух из атмосферы и под давлением (0,2-г-0,25) МПа подает его в охладитель, и далее в приводной нагнетатель. В этом нагнетателе воздух дополнительно сжимается еще на (0,034-0,05) МПа и через наддувочный коллектор и впускные окна подается в цилиндр дизеля. Во время пуска дизеля, когда газовая турбина не работает, приводной нагнетатель 7 засасывает воздух из атмосферы через нагнетатель 5 и охладитель 6 и подает его в дизель.

Рис. 187. Схема дизеля с комбинированным (двухступенчатым) наддувом: Рис. 188.

1 - поршень; 2 - цилиндр дизеля; 3 - клапаны выпускные; 4 - газовая турбина; 5 - нагнетатель первой ступени; 6 - воздухоотделитель; 7 - нагнетатель второй ступени; 8 - редуктор привода нагнетателя второй ступени; 9 - кривошип; - надувочный коллектор.

Рис. 188. Схема устройства и работы осевой газовой турбины:

1 - вал: 2 - диск колеса; 3 - лопатки рабочие; 4 - сопловой аппарат; 5 - корпус турбины.

Комбинированный двухступенчатый наддув применен в двухтактных тепловозных дизелях 10Д100, 11Д45. 14Д40.

В четырехтактных дизелях нагнетатель, приводимый от коленчатого вала, не нужен, так как энергии отработавших газов достаточно для сжатия воздуха до необходимого давления в турбокомпрессоре при всех скоростных и нагрузочных режимах работы.

Турбокомпрессор. Агрегат, объединяющий осевую одноступенчатую реактивную газовую турбину и центробежный одноступенчатый компрессор (нагнетатель), называется турбокомпрессором. На тепловозных дизелях устанавливаются турбокомпрессоры унифицированного ряда ТК с осевой газовой турбиной и центробежным нагнетателем, имеющие высокий к.п.д. и обеспечивающие высокую надежность. Внутри каждого типа компрессоров может существовать несколько модификаций, различающихся главным образом конструкцией корпусов, монтажных фланцев и рабочими характеристиками в зависимости от расположения цилиндров дизеля, а также его параметров. На тепловозные дизели устанавливают четыре типоразмера турбокомпрессоров: ТК-23, ТК-30, ТК-34, ТК-38. Буквы ТК означают турбокомпрессор, а цифры 23, 30 и т. д. — диаметр колеса компрессора в сантиметрах.

В зависимости от степени повышения давления турбокомпрессоры делятся на три группы: низкого давления 1,3-1,9 (Н); среднего давления 2,1-2,5 (С); высокого давления 2,5-3,5 (В). Принципиальная схема осевой (аксиальной) газовой турбины представлена на (рис. 187). Принцип действия турбокомпрессоров одного унифицированного ряда одинаков.

Основные технические параметры. Табл. 2.

Основные параметры

Типы турбокомпрессоров

TK-23

ТК-30

Т K-34

ТК-38

Диаметр колес компрессора и турбины, мм

230

300

340

380

Степень повышения давления

1,3-2.5

1,3-2.5

1,3-2.5

1,3- 2,5

Температура газов перед турбиной при

600

600

600

600

длительной работе,

°С

 

 

 

 

Максимальная температура газов перед

650

650

650

650

турбиной. "С

 

 

 

 

 

К. п. д. компрессора

0,78

0,78

0.80

0,80

К. п. д. турбины

 

0.76

0,76

0.77

0.78

Габаритные

длина

780

900

1000

1150

размеры, мм

ширина и

 

 

 

 

 

высота

580

700

800

900

Расчетный моторесурс, ч

15 000

20 000

20 000

20 000

Масса, кг

 

180

350

510

700

Установлен на дизеле

НД70

ПДІМ

1 ОД 100,

Д70 .

 

 

 

 

1ІД45

Д49

Степенью повышения давления называется отношение давления воздуха после нагнетателя к давлению воздуха на входе в нагнетатель. Газовая турбина является лопаточным тепловым двигателем, который преобразует тепловую энергию газового потока в механическую работу. Элементами, преобразующими энергию газа в турбине, является сопловой аппарат и рабочее колесо с лопатками по окружности. Газовый тракт— сопловой аппарат, зазор, межлопаточные каналы — называется проточной частью турбины.

Газ из выпускного коллектора дизеля поступает в сопловой аппарат 4 (см. рис. 188). Здесь скорость газа значительно возрастает, так как тепловая (потенциальная) энергия газа в сопловом аппарате превращается в кинетическую. Из сопел газ поступает на лопатки 3, проходит между ними по криволинейным каналам, создавая вращающий момент на валу. В зависимости от характера протекания газового потока по межлопаточным каналам турбины делятся на активные и реактивные.

В активных турбинах на рабочих лопатках не происходит изменения состояния газа — давление и температура остаются постоянными, относительная скорость газа в межлопаточных каналах почти не меняется.

В реактивных турбинах процесс расширения газа, начавшийся в сопловом аппарате, продолжается и в межлопаточных каналах турбинного колеса, т. е. в реактивных турбинах; процесс преобразования тепловой (потенциальной) энергии в кинетическую происходит также и в рабочих лопатках, вследствие этого относительная скорость газа в межлопаточных каналах возрастает, а давление и температура его снижаются. Так как при этом рабочее колесо турбины вращается с высокой окружной скоростью и, то уменьшается также и абсолютная скорость газового потока на выходе из межлопаточных каналов. Механическая работа иа лопатках турбинного колеса совершается за счет разности энергий газового потока до и после лопаточного аппарата.

Система всасывания, наддува и выпуска ПД1М. Служит для забора, очистки и нагнетания атмосферного воздуха в цилиндры, а также отвода продуктов сгорания через турбо­компрессор в атмосферу. Она включает в себя турбокомпрессор типа ТК-30, фильтр для очистки воздуха, над­дувочный и выпускные коллекторы и охладитель наддувочного воздуха.

Система надува ЧМЭ3, обеспечивающая дизель воздухом, состоит из следующих узлов: фильтра для очистки воздуха, турбокомпрессора, охладителя над­увочного воздуха, надувочного и выпускного коллекторов, всасывающего коллектора с установленными на нем фильт­рами для очистки воздуха. Всасывание из атмосферы и нагнетание сжатого воздуха в цилинд­ры на дизеле K6S310DR осуществляются турбокомпрессором (турбона­гнетателем), Воздух из турбокомпрессора, пройдя водовоздушный охладитель, поступает в надувочный коллектор и затем в цилиндры дизеля.

Отработавшие газы из цилиндров дизеля поступают по патрубкам в выпускные коллекторы, откуда попадают в турбокомпрессор. На дизе­ле 6S310DR, не имеющем наддува, воздух естественно всасывается в цилиндры, непосредственно из всасывающего коллектора, отработав­шие газы через выпускной коллектор и выпускную трубу выбрасывают­ся в атмосферу.

Рис. 189. Турбокомпрессор:

1, 26 - шарикоподшипники; 2, 22, 23, 28 - пластины упругие; 3, 25 - крышки подшипниковой по­лости; 4 - защитный лист; 5, 24 - корпусы подшипниковых опор; 6, 27 - втулки внутренние, 7 - насосный центробежный диск; 8 - корпус турбины входной (газоприемный); 9 - аппарат сопло­вой; 10 - корпус турбины средний; 11 - лопатки турбины; 12 - кожух ротора; 13 - ротор турбо­компрессора: 14, 20, 21, 38, 39, 40 - уплотнения лабиринтные; 15 - колесо компрессора рабочее; 16 - входная часть рабочего колеса компрессора (заборник); 17 - направляющая часть корпуса компрессора; 18 - корпус компрессора; 19, 37 - сетки; 29 - постель подшипниковой опоры; 30 - крышка корпуса опоры; 31 - кольцо крепежное; 32 - диффузор компрессора; 33 - стенка компрес­сора; 34 - теплоизоляционный материал; 35 - кронштейн установки турбокомпрессора; 36 - дрос­сель; 41, 42 - втулки подшипника наружные; а, б - полости уравнительные.

На дизеле K6S310DR установлен турбокомпрессор типа PDH50V (рис. 189), представляющий собой сочетание аксиальной газовой турби­ны и радиального центробежного компрессора, смонтированных на об­щем валу.

Принцип работы, назначение и компоновка основных узлов турбокомпрессора PDH50V и описанных выше турбокомпрессоров се­рии ТК аналогичны. Отличаются эти турбокомпрессоры в основном раз­мерами и конфигурацией деталей.

На тепловозах ЧМЭЗ воздух очищается сначала в сетча­тых фильтрующих кассетах, установленных в дверцах кузова теплово­за, поступает внутрь кузова и затем проходит на дизеле K6S310DR че­рез специальный воздухоочиститель, смонтированный на корпусе турбо­компрессора, а на дизеле 6S310DR — через сетчатый фильтр, установ­ленный на всасывающем коллекторе.

Охладитель наддувочного воздуха дизеля K6S310DR состоит из двух трубных досок, в отверстия которых вставлены и развальцованы водо­непроницаемые концы оребренных трубок. Тонколистовые прямоуголь­ные пластины оребрения набираются на две трубки и совместно с ними составляют трубчатый элемент. Внутри трубок образуется водяная, а между трубок — воздушные полости. Водяные полости закрыты сталь­ными крышками с перегородками, создающими четыре противоточных хода охлаждающей воды с фланцами.