Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 3 листа.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
541.03 Кб
Скачать
  • При высокой химической чистоте и структурном совершенстве свойства многих полупроводников однозначны и предсказуемы. Это облегчает расчеты и проектирование приборов.

    1. Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (ni) и дырок (pi) равны и много меньше числа уровней в валентной зоне и зоне проводимости. Поэтому свободные электроны занимают уровни вблизи дна зоны проводимости Ec, а свободные дырки - вблизи потолка валентной зоны Ev

    2. В примесных полупроводниках носители заряда бывают основными (электроны в проводнике n-типа) и не основными(дырки в полупроводнике р-типа, электроны в полупроводнике n-типа).

    3. Механизм проводимости у полупроводников

    Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

    Полупроводники чистые (без примесей) Если полупроводник чистый( без примесей), то он обладает собственной проводимостью? которая невелика.  Собственная проводимость бывает двух видов: 1) электронная ( проводимость "n " - типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается. Свободные электроны перемещаются противоположно вектору напряженности эл.поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов.

    2) дырочная ( проводимость " p" - типа ) При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка". Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.

    Кроме нагревания , разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением ( фотопроводимость ) и действием сильных электрических полей

    1. Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

    Полупроводник, имеющий примеси, называется примесным, а проводимость, созданная примесью, носит название примесной электропроводности.

    Различают полупроводниковые материалы n-типа и p-типа.

    1. Донорные примеси - атомы химических элементов, внедренные в кристаллическую решетку полупроводника и создающие дополнительную концентрацию электронов.Донорными примесями являются химические элементы, внедренные в полупроводник с меньшей, чем у примеси, валентностью.

      Акцепторные примеси - атомы химических элементов, внедренные в кристаллическую решетку полупроводника и создающие дополнительную концентрацию дырок.Акцепторными примесями являются химические элементы, внедренные в полупроводник с большей, чем у примеси, валентностью.

    1. Полупроводники n-типа

    Полупроводник n-типа

    Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. В этой электронной оболочке для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный электрон. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными примесями.

    Проводимость полупроводников n-типа приблизительно равна:

    σ≈qNnμn

    Полупроводники р-типа

    Полупроводник p-типа

    Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными примесями.

    Проводимость полупроводников p-типа приблизительно равна:

    σ≈qNpμp

    1. p-n-перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому.

    При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

    Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

    При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

    Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

    1. Свойство односторонней проводимости р-n перехода рассмотрим на вольтамперной характеристике.

    Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через р-nпереход тока от величины приложенного напряжения I=f(U) – рис.29.

    Так как величина обратного тока во много раз меньше, чем прямого, то обратным током мож­но пренебречь и считать, что р-nпереход проводит ток только в одну сторону. Температурное свойство р-nперехода показывает, как изменяется работа р-nперехода при из­менении температуры. На р-nпереход в значительной степени влияет нагрев, в очень малой степени - охлаждение. При увеличении температуры увеличивается термогенерация носи­телей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства р-n перехода показывают, как работает р-nпереход при подаче на него переменного напряжения высокой частоты. Частотные свойства р-nперехода определяются двумя видами емкости перехода.

    1. В этом случае сопротивление р - n перехода мало, вследствие чего через диод течет ток, называемый прямым током. Чем больше площадь р - n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, как это показано на (рис. 1, в), диод окажется в закрытом состоянии. В этом случае электрические заряды на диоде поведут себя иначе. Теперь, удаляясь от р - n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р - к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, (в) она заштрихована и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления - прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления - обратный ток Iобр. - Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный.

    Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводниковогоматериала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора - изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде. Транзистор применяется в:

    • Усилительных схемах. Работает, как правило, в усилительном режиме.[6][7] Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов.[8][9] Транзисторы в таких усилителях работают в ключевом режиме.

    • Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

    • Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

    1. Фоторези́стор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

    Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge (чистый или легированный примесями AuCu или Zn), SiPbSPbSe,PbTeInSbInAs, HgCdTe, часто охлаждаемые до низких температур. Полупроводник наносят в виде тонкого слоя на стекляннуюили кварцевую подложку или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус.

    Фоторезистор

    Важнейшие параметры фоторезисторов:

    интегральная чувствительность — отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

    порог чувствительности — величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

    Поле электромагнитная индукция

    1. Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1]; магнитная составляющая электромагнитного поля[2 Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

    Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

    Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

    Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

    • Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают[5]; однако в магнитной среде вектор не несет уже того же физического смысла[6], являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

    Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

    Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

    Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны

    1. Зависит от направления токов в проводниках отталкиваются или притягиваются Характер взаимодействия двух параллельных проводников с током зависит от направления тока в каждом из них. При одинаковом направлении токов проводники отталкиваются, при противоположном - притягиваются. Сила, с которой проводники действуют друг на друга, определяется законом Ампера и зависит от следующих параметров: длины проводников l, расстояния между ними R, токов в них I1 и I2

    2. правило буравчика и правило правой руки

    3. Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины отрезка проводника: Определить можно пользуясь следующими правилами:

    Правило буравчика для прямого тока: если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки совпадает с направлением вектора магнитной индукции в этой точке.

    Правило правой руки для прямого тока: если охватить проводник правой рукой, направив отогнутый большой палец вдоль тока, то кончики остальных пальцев в данной точке покажут направление вектора индукции в этой точке.

    1. Те́сла (русское обозначение: Тл; международное обозначение: T) — единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого однородного магнитного поля, в котором на 1 метр длины прямого проводника, перпендикулярного вектору магнитной индукции, с током силойампер действует сила 1 ньютон.

    Через основные единицы СИ тесла выражается следующим образом:

    кг·с−2·А−1

    1. Магнитная индукция - величина векторная, т. е. характеризуется численным значением и направленностью.

    Магнитное поле графически изображают при помощи линий магнитной индукции. Линией магнитной индукции (магнитной линией) называется такая линия, касательная к которой в любой точке совпадает с направлением вектора магнитной индукции.

    Магнитные линии используют для указания направления магнитного поля и характеристики его интенсивности. Чем больше интенсивность магнитного поля (индукция), тем чаще проводят эти линии.

    1.  Вихревыми поля – это поля с замкнутыми векторными линиями.

    2. Магнитный поток (поток магнитной индукции) через поверхность определенной площади — физическая величина, равная скалярному произведению вектора магнитной индукции на вектор площади: 1 Вебер – магнитный поток однородного магнитного поля индукции 1 Тл через площадку площадью 1 м2 ориентированную перпендикулярно вектору магнитной индукции.

    Закон Ампера.

    1. Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:

    F = B I l sinα,

    магнитное поле первого проводника действовало на второй проводник, а магнитное поле второго проводника — на первый. В случае параллельных токов силы Ампера оказывались направленными навстречу друг другу и проводники притягивались; в случае антипараллельных токов силы Ампера изменяли свое направление и проводники отталкивались друг от друга. Направление силы Ампера можно определить с помощью правила левой руки: если расположить левую ладонь руки так, чтобы четыре вытянутых пальца указывали направление тока в проводнике, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник с током 

    1. Модуль силы Ампера равен

    где α - угол между векторами    .

    С помощью измерения силы можно найти модуль вектора магнитной индукции (формула (2.45)). Сила будет максимальной, если sinα = 1. Тогда по формуле (2.45)

    1. если расположить левую ладонь так, чтобы вытянутые пальцы совпадали с направлением тока, асиловые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направлениесилы, действующей на проводник.  Применении Л. р. п. для определения направления силы ампера

    2. Сила ампера используется в электродвигателях и электроизмерительных приборах

    СИЛА ЛОРЕНЦА

    1. Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика Х. Лоренца (1853 — 1928) — основателя электронной теории строения вещества. Силу Лоренца можно найти с помощьюзакона Ампера.

    2. Fл = q·V·B·sin

    3. Если частица движется перпендикулярно линиям магнитного поля то траекторя частицы будет окружностьб потому что на частицу будет действовать сила Лоренца.  которая будет сообщать частице центростремительное ускорение

    4. Так как сила Лоренца перпендикулярна скорости частицы, то она не совершает работы. Согласно теореме о кинетической энергии это означает, что сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости. Под действием силы Лоренца меняется лишь направление скорости частицы.

    1. отметим использование силы Лоренца в различных электронных устройствах (кинескоп, магнетрон), масс-спектрографах, ускорителях заряженных частиц, других устройствах и приборах.

    Вещество в магнитном поле.

    1. Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией   инапряжённостью магнитного поля   в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая ее состав, состояние, температуру и т. д.).

    2. Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. Если плоскости, в которых циркулируют эти токи, расположены хаотично вследствие теплового движения молекул, то вещество не обнаруживает магнитных свойств. Если вещество намагничено, то токи ориентированы так, что их действия складываются.

    3. У диамагнетиков магнитная проницаемость   чуть меньше единицы. К ним относят, например, медь, золото, серебро, ртуть, хлор, инертные газы и другие вещества.Образец из диамагнитного материала, помещенный во внешнее однородное магнитное поле, устанавливается перпендикулярно линиям индукции этого поля. В неоднородном магнитном поле на образец действует сила, стремящаяся вытолкнуть его за пределы поля. Магнитная проницаемость диамагнетиков не зависит от напряженности магнитного поля. У парамагнетиков   чуть больше единицы. К ним относят натрий, магний, алюминий, кислород, многие другие элементы, а так же растворы некоторых солей. Образец из парамагнетика в однородном внешнем магнитном поле устанавливается вдоль линий индукции поля. В неоднородном магнитном поле на парамагнитный образец действует сила, стремящаяся втянуть его в область более сильного поля. Магнитная проницаемость парамагнетиков не зависит от напряженности внешнего магнитного поля. ферромагнетик — такое вещество, которое при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

    4. Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.

    При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

    Для ферромагнетиков характерно явление гистерезиса.

    Ферромагнетики притягиваются магнитом.

    5.Применение ферромагнетиков в технике: роторы генераторов и электродвигателей; сердечники трансформаторов, электромагнитных реле; в электронно-вычислитель­ных машинах (ЭВМ) , телефонах, магнитофонах, на магнитных лентах. На практике их применяют для катушек индуктивности, трансформаторов высокой частоты. Феррит обладает очень хорошей электромагнитной проводимостью, лучше, чем трансформаторная сталь! На подобных катушках с ферритом можно построить генераторы, и возбудители электромагнитных волн.

    Электромагнитная индукция.

    1. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

    1. Подключим к чувствительному гальванометру катушку с большим числом витков. Перемещая вдоль катушки постоянный магнит, мы увидим, что, пока магнит движется, стрелка гальванометра отклоняется. То есть в катушке возникает электрический  ток. Как только магнит останавливается, этот ток исчезает . При движении магнита в обратном направлении электрический ток в катушке возникает вновь, но направление тока теперь будет так же противоположно первому. Ток, который возникает в катушке, когда относительно нее движется постоянный магнит, назвали индукционным. (Слово «индукционный» образовано от латинского слова inductio — наведение.) Этот ток в катушке индуцируется, т. е. наводится движущимся магнитом. Можно двигать не магнит, а катушку относительно магнита; и здесь мы вновь обнаружим индукционный ток.


    Подключим одну катушку к источнику тока  и вставим во вторую, подключенную к гальванометру. При движении катушки, по которой идет ток внутри второй, также возникает индукционный ток, существование которого демонстрирует нам гальванометр.

    При замыкании и размыкании цепи первой катушки  происходит изменение силы тока, а следовательно изменение магнитного поля вокруг нее, и мы также наблюдаем  наличие индукционного тока во второй катушке.

    1. Электромагнитная индукция и ее количественные показатели зависят от нескольких основных факторов. Во-первых, она находится в прямой зависимости от того, насколько часто проводник пересекает силовые линии магнитного поля (или наоборот), то есть от того, с какой скоростью движется проводник. Во-вторых, величина индукции тем больше, чем сильнее магнитное поле. Наконец, в-третьих, электромагнитная индукция зависит от площади соприкосновения проводника с силовыми линиями магнита.

    Вихревое электрическое поле

    1. Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое поле. Оно не связано непосредственно с электрическими зарядами, силовые линии этого поля не начинаются и не заканчиваются на электрических зарядах и представляют собой замкнутые линии, подобные линиям магнитной индукции. Поэтому это поле называетсявихревым электрическим полем

    2. источники поля указать нельзя

    3. Силовые линии вихревого электрического поля замкнуты, это поле вызвано переменным во времени магнитным полем, а электростатическое поле создаётся неподвижными зарядами, его силовые линии разомкнуты, они начинаются и заканчиваются на зарядах. Работа по перемещению заряда по замкнутой траектории в вихревом поле не равна нулю, а в электростатическом поле равна нулю.

    4. При увеличении силы тока уменьшается, при уменьшении увеличивается.

    Закон электромагнитной индукции

    1. ЭДС индукции Ei — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.

    2. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока.

    3.  Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

    Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.    Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.    Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток. 

    1. Допустим, что в одноpодном магнитном поле с постоянной скоpостью vпод углом a к напpавлению поля движется пpоводящий стеpжень, оpиентиpованный пеpпендикуляpно к силовым линиям поля . На каждый электpон пpоводимости (стеpжень металлический) действует сила Лоpенца, напpавленная вдоль стеpжня. Под действием этой силы электpоны пpидут в движение и станут накапливаться на ближнем к нам конце стеpжня. Дальний от нас конец потеpяет электpоны, т.е. заpядится положительно

    На концах стеpжня длиной l возникнет pазность потенциалов. Такой пpоводник пpедставляет собой своеобpазный источник тока (если его замкнуть, то потечет ток), и pазность потенциалов пpедставляет по сути pазность потенциалов на электpодах pазомкнутого источника тока, т.е. электpодвижущую силу.

     

    Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется по правилу правой руки : если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

    Самоиндукция 1. Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

    При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.    Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции.

    2. Рассмотрим несколько случаев влияния ЭДС самоиндукции на ток в цепи.

          Случай 1.

          По правилу Ленца, токи возникающие в цепях вследствие самоиндукции всегда направлены так, чтобы препятствовать изменению тока, текущего в цепи. Это приводит к тому, что при замыкании ключа К установление тока I2 в цепи, содержащей индуктивность L, будет происходить не мгновенно, а постепенно (рис. 1).

    Рис. 1

          Сила тока в этой цепи будет удовлетворять уравнению

     

    ,

     

     

          Скорость возрастания тока будет характеризоваться постоянной времени цепи:

     

    ,

     

          В цепи, содержащей только активное сопротивление R, ток    установится практически мгновенно (пунктирная кривая рис. 1).

          Случай 2.

          При переводе ключа из положения 1 в 2 в момент времени   , ток начнет уменьшаться, но ЭДС самоиндукции будет поддерживать ток в цепи, т.е. препятствовать резкому уменьшению тока (рис. 5.2). В этом случае убывание тока в цепи можно описать уравнением

     

    ,

     

          Оба эти случая говорят, что чем больше индуктивность цепи L и чем меньше сопротивление R, тем больше постоянная времени τ и тем медленнее изменяется ток в цепи.

    Рис. 2

          Случай 3.

    Размыкание цепи, содержащей индуктивность L. Т.к. цепь разомкнута, ток не течёт, поэтому рисуем зависимость    (рис. 3).

    Рис. 3

          При размыкании цепи в момент времени   ,   . Это приводит к резкому возрастанию ЭДС индукции, определяемой по формуле

          Происходит этот скачок вследствие большой величины скорости изменения тока   .

              резко возрастает по сравнению с    и даже может быть в несколько раз больше   . Поэтому нельзя резко размыкать цепь, включающую в себя трансформаторы и другие индуктивности.

    3.

    ИНДУКТИВНОСТЬ

    1. Величина, характеризующая соотношение между скоростью изменения тока и величиной, проявляющейся при этом в про­воднике ЭДС самоиндукции, называется коэффициентом самоиндукции или индуктивностью проводника. Физический смысл магнитное поле создаваемое вокруг проводника во время протекания по нему электрического тока

    L= – εs dt/di

    1. В системе единиц СИ индуктивность измеряется в генри[7], сокращённо «Гн». Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

    ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

    1. Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др. ) на создание тока. При размыкании цепи эта энергия переходит в другие виды энергии. То, что для создания тока необходимо затратить энергию, т. е. необходимо совершить работу, объясняется тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной /, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока. При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.