- •Л е к ц и я 1. Введение в анатомию. Уровни структурной организации организма. Положение человека в природе.
- •Анатомическая терминология
- •Основные анатомические понятия
- •1. Значение опорно-двигательного аппарата
- •1. Биологические – пассивная двигательная, защитная, опорная.
- •2. Биологические – минерального обмена и кроветворная.
- •2.Строение, функции и возрастные особенности скелета человека
- •Типы соединения костей
- •Соединения костей
- •Анатомия суставов
- •Скелет туловища
- •Соединения костей головы (черепа)
- •Соединения костей конечностей
- •Соединения костей голени
- •Форма мышц
- •2. Пищеварение в ротовой полости. Слюнные железы.
- •3.Пищеварение в желудке.
- •4. Роль печени и поджелудочной железы в пищеварении.
- •Лекция 8. Мочеполовая система.
- •Мочеполовой аппарат
- •Мочевые органы
- •Мужские половые органы
- •Лекция 9. Учение о сосудах. (Ангиология). Общая анатомия кровеносной системы. Сердце, его топография, строение функция.
- •Лекция 10. Артериальная система: аорта, ее отделы. Закономерности расположения и ветвления сосудов.
- •Малый круг кровообращения
- •Большой круг кровообращения
- •Аорта и ее ветви
- •Вены. Лимфатическая система.
- •1. Понятие о железах внутренней секреции. Гормоны.
- •2. Эндокринная система в разные возрастные периоды.
- •2.1 Гипофиз
- •2.2. Эпифиз
- •2.3. Щитовидная железа
- •2.4. Надпочечники
- •2.5. Поджелудочная железа
- •2.6. Вилочковая железа
- •2.7. Околощитовидные железы
- •3. Половые железы, их роль в процессе роста, развития организма и полового созревания
- •Тема: «Возрастная анатомия и физиология нервной системы. Общий план строения нервной системы.» План.
- •Центральная нервная система , ее строение, функции.
- •Лекция 16. Периферическая нервная система : «Вегетативная нервная система. Онтогенез нервной системы.» План.
- •Вегетативная и соматическая нервная система
- •Сравнительная характеристика отделов
- •1. Понятие «сенсорная система».
- •Строение и функциональное значение анализаторов
- •2 Онтогенез слухового анализатора
- •3. Строение кожи и ее функция.
- •Возрастные особенности кожного анализатора
- •Вкусовой анализатор
- •Л е к ц и я. 18. Динамическая анатомия. Анатомическая характеристика положений и движений тела человека.
Тема: «Возрастная анатомия и физиология нервной системы. Общий план строения нервной системы.» План.
Регуляторные системы организма
Общий план строения нервной системы.
Нейроглия
Структура нейрона, его свойства
Строение и свойства нервных волокон.
Связь между нейронами.
Регуляторные системы организма
Нервная система обеспечивает взаимосвязь между отдельными органами и системами органов и функционирование организма как единого целого. Она регулирует и координирует деятельность различных органов, приспосабливает деятельность всего организма как целостной системы к изменяющимся условиям внешней и внутренней среды. С помощью нервной системы осуществляются восприятие и анализ разнообразных раздражений из окружающей среды и внутренних органов, а также ответные реакции на эти раздражения. Вместе с тем следует иметь в виду, что вся полнота и тонкость приспособления организма к окружающей среде осуществляются при взаимодействии нервных и гуморальных механизмов регуляции.
Гуморальная регуляция представляет собой способ передачи регулирующей информации к эффекторам через жидкую внутреннюю среду организма с помощью молекул химических веществ, выделяемых клетками или специализированными тканями и органами. Этот вид регуляции жизнедеятельности может обеспечивать как относительно автономный местный обмен информацией об особенностях метаболизма и функции клеток и тканей, так и системный эфферентный канал информационной связи, находящийся в большей или меньшей зависимости от нервных процессов восприятия и переработки информации о состоянии внешней и внутренней среды.
Деление механизмов регуляции жизнедеятельности организма на нервные и гуморальные весьма условно и может использоваться только для аналитических целей как способ изучения. На самом деле, нервные и гуморальные механизмы регуляции неразделимы, так как информация о состоянии внешней и внутренней среды воспринимается почти всегда элементами нервной системы - рецепторами, обрабатывается в нервной системе, где может трансформироваться в сигналы исполнительных устройств либо нервной, либо гуморальной природы.
Управляющим «устройством» является, как правило, нервная система. Однако, сигналы, поступающие по управляющим каналам нервной системы передаются в местах окончания нервных проводников в виде химических молекул-посредников, поступающих в микроокружение клеток, т.е. гуморальным путем. А специализированные для гуморальной регуляции железы внутренней секреции управляются нервной системой.
Таким образом, следует говорить о единой нейро-гуморальной системе регуляции физиологических функций.
Общий план строения нервной системы.
Нервная система человека структурно подразделяется на центральную (ЦНС) и периферическую.
ЦНС состоит из нейронов и клеток нейроглии, периферическая – из отростков нейронов и периферических узлов – ганглиев.
К ЦНС относят спинной и головной мозг, к периферической – 12 пар черепно-мозговых нервов, 31 пару спинномозговых нервов и нервные узлы.
Функционально нервную систему делят на соматическую, регулирующую деятельность скелетных мышц и органов чувств и вегетативную (симпатическую, парасимпатическую), регулирующую деятельность внутренних органов, сосудов и желез.
Нейроглия
Нейроглия (от нейро... и греч. glía - клей), глия - клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками - нейронами - и мозговыми капиллярами. Каждый нейрон окружен несколькими клетками нейроглии, которая равномерно распределена по всему мозгу и составляет около 40% его объёма.
Число глиальных клеток их в центральной нервной системе млекопитающих около 140 млрд. - мельче нейронов в 3-4 раза и отличаются от них по морфологическим и биохимическим признакам.
С возрастом количество нейронов в ЦНС уменьшается, а клеток нейроглии - увеличивается, т.к. последние, в отличие от нейронов, сохраняют способность к делению.
Рис. 2.
Основные функции нейроглии: создание между кровью и нейронами барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь; обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей и др.).
Различают астроглию, олигоглию, или олигодендроглию, и эпендиму, которые вместе составляют макроглию, а также микроглию, занимающую особое положение среди клеток нейроглии.
Астроглия (около 60% от общего числа клеток) - звездообразные клетки с многочисленными тонкими отростками, оплетающими нейроны и стенки капилляров (рис.); основной элемент гемато-энцефалического барьера; регулирует водно-солевой обмен нервной ткани.
Олигоглия (около 25-30%) - более мелкие, округлые клетки с короткими отростками. Окружают тела нейронов и нервные проводники - аксоны. Отличаются высоким уровнем белкового и нуклеинового обмена; ответственны за транспорт веществ в нейроны. Участвуют в образовании миелиновых оболочек аксонов.
Эпендима состоит из клеток цилиндрической формы, выстилающих желудочки головного мозга и центральный канал спинного мозга. Играет роль барьера между кровью и спинномозговой жидкостью; выполняет, по-видимому, и секреторную функцию.
Нейроглия (главным образом олигоглия) участвует в происхождении медленной спонтанной биоэлектрической активности, к которой относят a-волны электроэнцефалограммы. Система "нейрон - нейроглия" - единый функционально-метаболический комплекс, отличающийся цикличностью работы, адаптивностью реакций, способностью переключения определённых обменных процессов преимущественно в нейроны или в глии в зависимости от характера и интенсивности физиологических и патологических воздействий на ЦНС.
Структура нейрона, его свойства.
Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся.
В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является осуществление метаболизма клетки.
Рис.3. Строение нейрона. 1 — сома (тело) нейрона; 2 — дендрит; 3 — тело Швановской клетки; 4 — миелинизированный аксон; 5 — коллатераль аксона; 6 — терминаль аксона; 7 — аксонный холмик; 8 — синапсы на теле нейрона
Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа.
1. Одни — короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro — дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.
2. Другим типом отростков нервных клеток являются аксоны. Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями). Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления.
Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом — миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической — Шванновские клетки, являющиеся разновидностью олигодендроцитов. Олигодендроцит оборачивается вокруг аксона, образуя многослойную оболочку. Миелинизации не подвергается область аксонного холмика и терминали аксона. Цитоплазма глиальной клетки выдавливается из межмембранного пространства в процессе «обертывания». Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев. Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы — перехваты Ранвье. Ширина такого перехвата от 0,5 до 2, 5 мкм. Функция перехватов Ранвье — быстрое скачкообразное распространение потенциалов действия, осуществляющееся без затухания.
В центральной нервной системе аксоны различных нейронов, направляющиеся к одной структуре, образуют упорядоченные пучки — проводящие пути. В подобном проводящем пучке аксоны направляются «параллельным курсом» и часто одна глиальная клетка образует оболочку нескольких аксонов. Поскольку миелин является веществом белого цвета, то проводящие пути нервной системы, состоящие из плотно лежащих миелинизированных аксонов, образуют белое вещество мозга. В сером же веществе мозга локализуются тела клеток, дендриты и немиелинизированные части аксонов.
Рис.4.Строение миелиновой оболочки 1 — связь между телом клетки глии и миелиновой оболочкой; 2 — олигодендроцит; 3 — гребешок; 4 — плазматическая мембрана; 5 — цитоплазма олигодендроцита; 6 — аксон нейрона; 7 — перехват Ранвье; 8 — мезаксон; 9 — петля плазматической мембраны
Конфигурацию отдельного нейрона выявить очень трудно, поскольку они плотно упакованы. Все нейроны принято делить на несколько типов в зависимости от числа и формы, отходящих от их тела отростков. Различают три типа нейронов: униполярные, биполярные и мультиполярные.
Рис. 5. Виды нейронов. а — сенсорные нейроны: 1 — биполярный; 2 — псевдобиполярный; 3 — псевдоуниполярный; б — двигательные нейроны: 4 — пирамидная клетка; 5 — мотонейроны спинного мозга; 6 — нейрон двойного ядра; 7 — нейрон ядра подъязычного нерва; в — симпатические нейроны: 8 — нейрон звездчатого ганглия; 9 — нейрон верхнего шейного ганглия; 10 — нейрон бокового рога спинного мозга; г — парасимпатические нейроны: 11 — нейрон узла мышечного сплетения кишечной стенки; 12 — нейрон дорсального ядра блуждающего нерва; 13 — нейрон ресничного узла
Униполярные клетки. Клетки, от тела которых отходит только один отросток. На самом деле при выходе из сомы этот отросток разделяется на два: аксон и дендрит. Поэтому правильнее называть их псевдоуниполярными нейронами. Для этих клеток характерна определенная локализация. Они принадлежат неспецифическим сенсорным модальностям (болевая, температурная, тактильная, проприоцептивная).
Биполярные клетки — это клетки, которые имеют один аксон и один дендрит. Они характерны для зрительной, слуховой, обонятельной сенсорных систем.
Мультиполярные клетки имеют один аксон и множество дендритов. К такому типу нейронов принадлежит большинство нейронов ЦНС.
Исходя из особенностей формы этих клеток их делят на веретенообразные, корзинчатые, звездчатые, пирамидные. Только в коре головного мозга насчитывается до 60 вариантов форм тел нейронов.
Сведения о форме нейронов, их местоположении и направлении отростков очень важны, поскольку позволяют понять качество и количество связей, приходящих к ним (структура дендритного дерева), и пункты, в которые они посылают свои отростки.
Строение и свойства нервных волокон.
Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают:
- миелиновые
- безмиелиновые нервные волокна.
Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны.
Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы.
Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. Миелиновый слой оболочки такого волокна содержит значительное количество липидов. Через определенные интервалы (1—2 мм) видны участки волокна, лишенные миелинового слоя, — это так называемые узловатые перехваты, или перехваты Ранвье.
Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/с, тогда как толстые миелиновые — со скоростью 5—120 м/с.
В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехватов.
Миелинизация нервных волокон играет важную роль в процессе развития нервной системы. Следы миелина обнаруживаются в нервных волокнах задних и передних корешков уже на 4-м месяце внутриутробной жизни плода. К концу 4-го месяца миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых (пирамидных) путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствует о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем — на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Этим объясняется позднее созревание пирамидной системы и постепенное начало проявления ее функции в первые два года жизни ребенка. В это время бурно развиваются нервные элементы коры большого мозга, где происходит не только миелинизация нервных волокон, но и функциональная дифференциация клеточных элементов и их постепенное созревание, которое длится в течение первого десятилетия.
В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела — коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни.
Пучки нервных волокон собраны в нервы. Нервы покрыты оболочкой из соединительной ткани. Собственная оболочка покрывает и каждое волокно в отдельности. Как и нейроны, нервы бывают сенсорными (афферентными) и моторными (эфферентными). Встречаются также смешанные нервы, передающие импульсы в обоих направлениях..
Рис.6. Поперечный срез нервного волокна
Связь между нейронами.
Передача информации от одного нейрона к другому происходит в синапсах. Обычно посредством синапсов связаны между собой аксон одного нейрона и дендриты или тело другого. Синапсами связаны с нейронами также окончания мышечных волокон. Число синапсов очень велико: некоторые клетки головного мозга могут иметь до 10 000 синапсов.
Рис.7 Строение синапса 1 — аксон пресинаптического нейрона; 2 — микротрубочки; 3 — синаптический пузырек (везикула); 4 — синаптическая щель; 5 — дендрит постсинаптического нейрона; 6 — рецептор для медиатора; 7 — постсинаптическая мембрана; 8 — пресинаптическая мембрана; 9 — митохондрия
В образовании синапса участвуют как пресинаптическая часть, так и мембрана последующей клетки (постсинаптическая часть). Синапс состоит из пресинаптической бляшки (расширение терминали аксона), оканчивающейся пресинаптической мембраной, и постсинаптической мембраны (участка мембраны постсинаптической клетки, лежащего под синаптической бляшкой). Между пресинаптической и постсинаптической мембранами расположена синаптическая щель. От ее величины зависит тип передачи информации через синапс. Если расстояние между мембранами нейронов не превышает 2—4 нм или они контактируют между собой, то такой синапс является электрическим, поскольку подобное соединение обеспечивает электрическую связь между этими клетками, позволяющую электрическому потенциалу непосредственно или электротонически передаваться от клетки к клетке. Доля электрических синапсов в ЦНС позвоночных очень мала.
Чаще всего мембраны нейронов расположены в непосредственной близости друг к другу и разделены обычным межклеточным пространством (щелью шириной примерно 20 нм) — смежное соединение. Такая смежность мембран облегчает перемещение из одной клетки в межклеточную щель химических веществ (ионов, метаболитов нейронов), которые оказывают влияние как на ту же самую клетку, так и на отростки соседних нейронов. Эти соединения нейронов относят к химическим синапсам.
В пресинаптическом окончании химического синапса находятся пузырьки, содержащие вещество — передатчик, называемое медиатором. В момент прихода к синаптической бляшке электрического импульса пузырьки открываются в пресинаптическую щель, выбрасывая туда медиатор. Медиатор диффундирует через щель и на постсинаптической мембране взаимодействует с рецептором, специфически чувствительным к медиатору, при этом возникает постсинаптический потенциал.
Таким образом, информация в нервной системе передается только в одном направлении (от пресинаптического нейрона к постсинаптическому) и в этом процессе участвует биологически активное вещество — медиатор.
