- •Кинематические характеристики движения материальной точки и поступательного движения твердого тела (траектория, скорость, ускорение).
- •Простейшие виды поступательного движения (равномерное и равноускоренное движение).
- •Связь между линейными и угловыми кинематическими характеристиками движения.
- •Консервативные силы, потенциальная энергия и их взаимосвязь.
- •Момент импульса и закон то сохранения
- •Кинетическая энергия тела при вращении.
- •Затухающие колебания. Коэффициент затухания и логарифмический декремент затухания. Их физический смысл.
- •Вынужденные колебания. Резонанс.
- •Основные положения и основное уравнение молекулярно-кинетической теории идеального газа.
- •Опытные газовые законы. Понятие о температуре.
- •Распределение Максвелла по скоростям.
- •Барометрическая формула. Распределение Больцмана.
- •Теплота и работа.
- •Первый закон термодинамики и его применение к изопроцессам.
- •Обратимые и необратимые процессы. Циклы. Цикл Карно и его кпд. Второй закон термодинамики.
- •Реальный газ. Уравнение Ван-дер-Ваальса.
- •Внутренняя энергия реального газа.
- •Электрический заряд. Дискретность заряда. Закон сохранения заряда. Закон Кулона.
- •Электрическое поле, напряженность поля. Принцип суперпозиции.
- •Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме.
- •Работа сил электростатического поля. Циркуляция вектора напряженности электростатического поля.
- •Потенциал. Связь напряженности электростатического поля с потенциалом. Эквипотенциальные поверхности.
- •Поляризация диэлектриков. Виды поляризации. Поляризованность.
- •Электроемкость уединенного проводника.
- •Характеристики и условия существования постоянного электрического тока.
- •Правила Кирхгофа.
- •Работа и мощность тока. Закон Джоуля − Ленца.
- •Работа δa электрического тока I, протекающего по неподвижному проводнику с сопротивлением r, преобразуется в тепло δq, выделяющееся на проводнике.
- •Классическая теория электропроводности металлов. Закон Видемана − Франца.
- •Контактная разность потенциалов. Термоэлектрические явления.
- •Термоэлектронная эмиссия. Вакуумный диод.
- •Магнитное поле. Вектор магнитной индукции.
- •Закон Био − Савара − Лапласа. Принцип суперпозиции. Поле прямого тока.
- •Естественный и поляризованный свет. Виды поляризации света. Закон Брюстера.
- •Внешний фотоэффект и его законы.
- •Эффект Комптона и его теория.
- •Рентгеновские спектры. Форму Мозли.
- •Заряд, размер и масса атомного ядра. Ядерные силы.
- •Дефект массы и энергия связи ядер.
- •Радиоактивный распад. Закономерности альфа- и бета-распада. Гамма-излучение.
- •Альфа - распад
- •Бета - распад
- •Ядерные реакции и законы сохранения. Реакция деления ядра.
Затухающие колебания. Коэффициент затухания и логарифмический декремент затухания. Их физический смысл.
Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Закон затухания колебаний зависит от свойств колебательной системы. Система называется линейной, если параметры, характеризующие существенные в рассматриваемом процессе физические свойства системы, не изменяются в ходе процесса. Свободные затухающие колебания линейной системы описываются уравнением:
,
Найдем отношение значений амплитуды затухающих колебаний в моменты времени t и
где β – коэффициент затухания.
Натуральный логарифм отношения амплитуд, следующих друг за другом через период Т, называется логарифмическим декрементом затухания χ:
Выясним физический смысл χ и β.
Время релаксации τ – время, в течение которого амплитуда А уменьшается в e раз.
отсюда
Следовательно, коэффициент затухания β есть физическая величина, обратная времени, в течение которого амплитуда уменьшается в е раз.
Пусть N число колебаний, после которых амплитуда уменьшается в e раз. Тогда
Следовательно, логарифмический декремент затухания χ есть физическая величина, обратная числу колебаний, по истечении которых амплитуда А уменьшается в e раз.
Если χ = 0,01, то N = 100.
При большом коэффициенте затухания происходит не только быстрое уменьшение амплитуды, но и заметно увеличивается период колебаний. Когда сопротивление становится равным критическому , а то круговая частота обращается в нуль ( ), а ( ), колебания прекращаются. Такой процесс называется апериодическим.
Отличия в следующем. При колебаниях тело, возвращающееся в положение равновесия, имеет запас кинетической энергии. В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления, трения.
Вынужденные колебания. Резонанс.
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
Наиболее
простой и содержательный пример
вынужденных колебаний можно получить
из рассмотрения гармонического
осциллятора и вынуждающей
силы, которая изменяется по закону:
.
Резона́нс (фр. resonance, от лат. resono «откликаюсь») — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты внешнего воздействия с некоторыми значениями (резонансными частотами), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с некоторой другой частотой, определяемой из параметров колебательной системы, таких как внутренняя (собственная) частота, коэффициент вязкости и т.п. Обычно резонансная частота не сильно отличается от собственной нормальной, но далеко не во всех случаях можно говорить об их совпадении.
В результате резонанса, при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемойдобротность. При помощи резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.
