Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кинематические характеристики движения материал...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
662.29 Кб
Скачать
  1. Консервативные силы, потенциальная энергия и их взаимосвязь.

Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.

К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия.

Вычислим, например, работу, которую совершает сила тяжести при переходах частицы разными путями из положения 1 в положение 2 (рис. 6.2). Если этот переход произошёл по вертикали, то работа силы  :

                          .                  (6.11)

Теперь пусть та же частица переместится из 1 в 2 по пути 1-1’-2. Здесь промежуточная точка 1’ находится на высоте h2

Рис. 6.2

Полная работа будет складываться из работ силы тяжести на участках 1-1’ и 1’-2:

.

Работа силы тяжести на горизонтальном участке 1’-2 равна нулю, так как здесь вектор силы нормален перемещению. Мы вновь получили прежний результат, свидетельствующий о том, что работа силы тяжести не зависит от формы траектории. Этот вывод легко обобщается и на случай произвольной криволинейной траектории, соединяющей начальную и конечную точки пути.

Гравитационная сила, сила упругости, кулоновская сила электростатического взаимодействия относятся к так называемым центральным силам.

Центральными называются силы, направленные к одной и той же точке (либо от неё). Эта точка называется силовым центром. Величина центральной силы зависит только от расстояния до силового центра r (рис. 6.3). 

Рис. 6.3

Покажем, что все центральные силы консервативны.

Вычислим работу центральной силы на участке 1-2 произвольной траектории (рис. 6.3).

Элементарная работа силы на участке  :

.

Здесь dSr = dSCosα — проекция вектора перемещения   на направление силы   (или r). Эта проекция представляет собой изменение расстояния dr до силового центра. Значит:

dA = F(r)dr.

Работа на конечном пути:

.

Так как по определению величина центральной силы есть функция только расстояния r, то значение определённого интеграла будет зависеть только от величин r1 и r2, и не будет зависеть от формы траектории.

Можно дать иное определение консервативной силы.

Рассмотрим перемещение частицы из положения 1 в положение 3 под действием консервативной силы   (рис. 6.4). 

Рис. 6.4

Работа, совершаемая при этом силой  , не зависит формы от траектории, то есть  .

Теперь вычислим работу этой же силы на замкнутом пути 1-2-3-4-1. понятно, что её можно представить суммой работ на участках 1-2-3 и 3-4-1

.

При этом  .

Отсюда можно заключить, что работа консервативной силы по любому замкнутому пути равна нулю

.

Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.

  1. Неконсервативные силы, диссипация механической энергии.

  2. Закон сохранения полной механической энергии.

  3. Момент силы, момент импульса материальной точки и системы материальных точек.

  4. Момент инерции тела. Физический смысл. Теорема Штейнера. Правило аддитивности.

  5. Момент импульса тела, вращающегося относительно неподвижной оси. Основное уравнение динамики вращательного движения. Закон сохранения проекции момента импульса на ось вращения.

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точ­ки О в точку Априложения силы, на силу F (рис. 25): Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы (18.1) где a— угол между r и F; r sina = l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы. Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точкиО данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z. Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложе­на в точке В, находящейся от оси z на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds=rdj и работа равна произведе­нию проекции силы на направление смещения на величину смещения   (18.2) Учитывая (18.1), можем записать где Frsin a = Fl =Mz — момент силы относительно оси z. Таким образом, работа при вращении тела  равна произведению момента действующей силы на угол поворота.  Работа при вращении тела идет на увеличение его кинетической энергии:dA=dT, но  поэтому Mzdj = Jzwdw, или  Учитывая, что   получаем  (18.3) Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство      (18.4) где J — главный момент инерции тела (момент инерции относительно главной оси).

Момент инерции При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом инерции системы (тела) относительно данной оси называется физическая величина, равнаясумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси: В случае непрерывного распределения масс эта сумма сводится к интегралу  где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z. В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним r+dr. Момент инерции каждого полого цилиндра dJ=r2dm (так как dr<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r—плотность материала, то dm=2prhrdr и dJ=2phrrзdr. Тогда момент инерции сплошного цилиндра но так как pR2h — объем цилиндра, то его масса m=pR2hr, а момент инерции Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера:момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массыт тела на квадрат расстояния а между осями: (16.1) В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

 

рис 23