- •Кинематические характеристики движения материальной точки и поступательного движения твердого тела (траектория, скорость, ускорение).
- •Простейшие виды поступательного движения (равномерное и равноускоренное движение).
- •Связь между линейными и угловыми кинематическими характеристиками движения.
- •Консервативные силы, потенциальная энергия и их взаимосвязь.
- •Момент импульса и закон то сохранения
- •Кинетическая энергия тела при вращении.
- •Затухающие колебания. Коэффициент затухания и логарифмический декремент затухания. Их физический смысл.
- •Вынужденные колебания. Резонанс.
- •Основные положения и основное уравнение молекулярно-кинетической теории идеального газа.
- •Опытные газовые законы. Понятие о температуре.
- •Распределение Максвелла по скоростям.
- •Барометрическая формула. Распределение Больцмана.
- •Теплота и работа.
- •Первый закон термодинамики и его применение к изопроцессам.
- •Обратимые и необратимые процессы. Циклы. Цикл Карно и его кпд. Второй закон термодинамики.
- •Реальный газ. Уравнение Ван-дер-Ваальса.
- •Внутренняя энергия реального газа.
- •Электрический заряд. Дискретность заряда. Закон сохранения заряда. Закон Кулона.
- •Электрическое поле, напряженность поля. Принцип суперпозиции.
- •Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме.
- •Работа сил электростатического поля. Циркуляция вектора напряженности электростатического поля.
- •Потенциал. Связь напряженности электростатического поля с потенциалом. Эквипотенциальные поверхности.
- •Поляризация диэлектриков. Виды поляризации. Поляризованность.
- •Электроемкость уединенного проводника.
- •Характеристики и условия существования постоянного электрического тока.
- •Правила Кирхгофа.
- •Работа и мощность тока. Закон Джоуля − Ленца.
- •Работа δa электрического тока I, протекающего по неподвижному проводнику с сопротивлением r, преобразуется в тепло δq, выделяющееся на проводнике.
- •Классическая теория электропроводности металлов. Закон Видемана − Франца.
- •Контактная разность потенциалов. Термоэлектрические явления.
- •Термоэлектронная эмиссия. Вакуумный диод.
- •Магнитное поле. Вектор магнитной индукции.
- •Закон Био − Савара − Лапласа. Принцип суперпозиции. Поле прямого тока.
- •Естественный и поляризованный свет. Виды поляризации света. Закон Брюстера.
- •Внешний фотоэффект и его законы.
- •Эффект Комптона и его теория.
- •Рентгеновские спектры. Форму Мозли.
- •Заряд, размер и масса атомного ядра. Ядерные силы.
- •Дефект массы и энергия связи ядер.
- •Радиоактивный распад. Закономерности альфа- и бета-распада. Гамма-излучение.
- •Альфа - распад
- •Бета - распад
- •Ядерные реакции и законы сохранения. Реакция деления ядра.
Работа и мощность тока. Закон Джоуля − Ленца.
Закон Джоуля Ленца — Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка
Закон Джоуля Ленца в интегральной форме в тонких проводах:
Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.
Закон Джоуля Ленца — Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу
ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt, |
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.
Если обе части формулы
RI = U, |
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
R I2 Δt = U I Δt = ΔA. |
Это соотношение выражает закон сохранения энергии для однородного участка цепи.
Работа δa электрического тока I, протекающего по неподвижному проводнику с сопротивлением r, преобразуется в тепло δq, выделяющееся на проводнике.
|
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.
Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
|
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
Классическая теория электропроводности металлов. Закон Видемана − Франца.
В промежутках между столкновениями они движутся свободно, пробегая некоторый путь l. Столкновения электронов осуществляется преимущественно с ионами решетки, и это приводит к тепловому равновесию между электронным газом и кристаллической решеткой. Среднюю скорость теплового движения электронов можно произвести по формуле: . При T=300 К эта скорость порядка 105 м/с. При включении поля на хаотическое движение частиц накладывается упорядоченное движение с некоторой средней скоростью . Ее можно оценить из выражения
Предельно допустимая плотность тока для медных проводников 107 А/м2, а концентрация электронов . Заряд электрона равен 1.6·10-19 Кл. Следовательно . Т.е. даже при очень больших плотностях тока средняя скорость теплового движения много больше средней скорости направленного движения, вызванного электрическим полем. Получим основные законы электропроводности на основе теории Друде- Лоренца. Согласно этой теории при соударении электрона с ионом кристаллической решетки приобретенная электроном дополнительная энергия полностью передается иону, и, следовательно, скорость электрона становится равной нулю. Под действием поля электроны ускоряются и приобретают ускорение, равноеeE/m. За время свободного пробега скорость электрона увеличивается до . Считая, что скорость всех электронов одинакова, можно записать, что время свободного пробега электрона равно , где vпрактически равна скорости хаотического движения электронов. Скорость u изменяется линейно за время свободного пробега, поэтому средняя скорость упорядоченного движения электронов равна . Плотность тока: . Таким образом, плотность тока оказалась пропорциональной напряженности.
Полученная формула выражаетзакон Ома в дифференциальной форме. Здесь - коэффициент пропорциональности, проводимость металла. Если бы не было столкновений между электронами и ионами решетки, то проводимость была бы бесконечной. Определим температурную зависимость проводимости. Концентрация электронов и длина свободного пробега не должны зависеть от температуры. От температуры зависит только средняя скорость теплового движения.. Следовательно, проводимость обратно пропорциональна корню из Т, а сопротивление возрастает как корень из Т. Эксперимент показывает, что сопротивление в широком интервале температур пропорционально температуре, и только при низких температура турах. Таким образом, теория проводимости металлов Друде-Лоренца, приводя к закону Ома, не может объяснить температурной зависимости сопротивления. Объяснение может дать только квантовая теория.
Зако́н
Видема́на — Фра́нца — это
физический закон, утверждающий, что
для металлов отношение
коэффициента теплопроводности(либо
тензора теплопроводности)
к удельной
электрической проводимости (либо
тензору проводимости)
пропорционально
температуре:
