- •Кинематические характеристики движения материальной точки и поступательного движения твердого тела (траектория, скорость, ускорение).
- •Простейшие виды поступательного движения (равномерное и равноускоренное движение).
- •Связь между линейными и угловыми кинематическими характеристиками движения.
- •Консервативные силы, потенциальная энергия и их взаимосвязь.
- •Момент импульса и закон то сохранения
- •Кинетическая энергия тела при вращении.
- •Затухающие колебания. Коэффициент затухания и логарифмический декремент затухания. Их физический смысл.
- •Вынужденные колебания. Резонанс.
- •Основные положения и основное уравнение молекулярно-кинетической теории идеального газа.
- •Опытные газовые законы. Понятие о температуре.
- •Распределение Максвелла по скоростям.
- •Барометрическая формула. Распределение Больцмана.
- •Теплота и работа.
- •Первый закон термодинамики и его применение к изопроцессам.
- •Обратимые и необратимые процессы. Циклы. Цикл Карно и его кпд. Второй закон термодинамики.
- •Реальный газ. Уравнение Ван-дер-Ваальса.
- •Внутренняя энергия реального газа.
- •Электрический заряд. Дискретность заряда. Закон сохранения заряда. Закон Кулона.
- •Электрическое поле, напряженность поля. Принцип суперпозиции.
- •Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме.
- •Работа сил электростатического поля. Циркуляция вектора напряженности электростатического поля.
- •Потенциал. Связь напряженности электростатического поля с потенциалом. Эквипотенциальные поверхности.
- •Поляризация диэлектриков. Виды поляризации. Поляризованность.
- •Электроемкость уединенного проводника.
- •Характеристики и условия существования постоянного электрического тока.
- •Правила Кирхгофа.
- •Работа и мощность тока. Закон Джоуля − Ленца.
- •Работа δa электрического тока I, протекающего по неподвижному проводнику с сопротивлением r, преобразуется в тепло δq, выделяющееся на проводнике.
- •Классическая теория электропроводности металлов. Закон Видемана − Франца.
- •Контактная разность потенциалов. Термоэлектрические явления.
- •Термоэлектронная эмиссия. Вакуумный диод.
- •Магнитное поле. Вектор магнитной индукции.
- •Закон Био − Савара − Лапласа. Принцип суперпозиции. Поле прямого тока.
- •Естественный и поляризованный свет. Виды поляризации света. Закон Брюстера.
- •Внешний фотоэффект и его законы.
- •Эффект Комптона и его теория.
- •Рентгеновские спектры. Форму Мозли.
- •Заряд, размер и масса атомного ядра. Ядерные силы.
- •Дефект массы и энергия связи ядер.
- •Радиоактивный распад. Закономерности альфа- и бета-распада. Гамма-излучение.
- •Альфа - распад
- •Бета - распад
- •Ядерные реакции и законы сохранения. Реакция деления ядра.
Обратимые и необратимые процессы. Циклы. Цикл Карно и его кпд. Второй закон термодинамики.
Цикл Карно — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно.
Круговой процесс (цикл) в термодинамике - процесс, при котором физическая система (например, пар), претерпев ряд изменений, возвращается в исходное состояние. Термодинамические параметры и характеристические функции состояния системы (температура Т, давление р, объём V, внутренняя энергия U, энтропия S и др.) в конце кругового процесса вновь принимают первоначальное значение и, следовательно, их изменения при круговом процессе равны нулю (DU = 0 и т. д.)
Обратимые и необратимые процессы, пути изменения состояния термодинамической системы. Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.
Второе начало термодинамики имеет несколько формулировок. Формулировка Клаузиуса: невозможен процесс перехода теплоты от тела с более низкой температурой к телу с более высокой.
Формулировка Томсона: невозможен процесс, результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела. Эта формулировка накладывает ограничение на превращение внутренней энергии в механическую. Невозможно построить машину (вечный двигатель второго рода), которая совершала бы работу только за счет получения теплоты из окружающей среды.
Реальный газ. Уравнение Ван-дер-Ваальса.
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.
Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:
где p — давление; V — объем; T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; m — масса; М — молярная масса; R — газовая постоянная.
Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основныетермодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давленияхи высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.
Для
более точного описания поведения
реальных газов при низких температурах
была создана модель газа Ван-дер-Ваальса,
учитывающая силы межмолекулярного
взаимодействия. В этой модели внутренняя
энергия
становится
функцией не только температуры,
но и объёма.
