Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тюкалов Дима.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
151.55 Кб
Скачать

I.4. Виды эхолокации.

Простейший вид эхолокации – одномерный. Импульс напряжения подаётся на излучающий элемент (генератор), тот направляет в среду короткий акустический импульс. Если на пути звуковой волны встречается препятствие (граница раздела слоёв с разными акустическими свойствами, например, трещина в металле), то часть сигнала отражается и может быть принята датчиком, чаще всего размещаемым там же, где и излучатель. Сигнал преобразуется в электрический, усиливается и появляется на экране. Пример к принципу действия одномерного УЗ-локатора находится в приложении 5

I.5. Принцип измерения.

Измеряя время запаздывания принятого импульса относительно излучённого τ и зная скорость звука в среде c, можно определить расстояние L до отражателя: L = cτ/2. Очевидно, что в реальных условиях приходится принимать меры к тому, чтобы эхолокатор не показывал слабые цели для исключения ложного срабатывания. Для этого существуют процедуры оценки минимального порогового уровня чувствительности обнаружения. Кроме того, разумно ограничиться некоторой зоной интереса по L, исключив из неё ближнюю зону, где всегда имеются мощные помехи, и дальнюю зону, где полезный сигнал становится сравним по амплитуде с шумами. Если к этому добавить управление усилением принятого сигнала (причём его можно сделать зависящим от дальности, чтобы скомпенсировать ослабление сигнала с расстоянием), мы получим универсальный эхолокатор, который с небольшими вариациями может быть использован для решения множества задач технической и медицинской диагностики.

I.6. Виды приборов.

В эхолокационной технике можно выделить несколько больших классов – уровнемеры, толщиномеры, эхолоты, дефектоскопы. Различаются они в основном алгоритмами использования получаемой акустической информации, тогда как основой для каждого из них по-прежнему является описанный выше одномерный эхолокатор. Например, если поставить УЗ-зонд (в котором находятся излучающий и приёмный элементы) на днище закрытой ёмкости с жидкостью, удастся измерить её уровень, не заглядывая в ёмкость, где может находиться ядовитая или огнеопасная субстанция. Если же нам неизвестны акустические свойства этой жидкости, можно поставить второй, так называемый опорный, зонд на боковую стенку этой ёмкости и определять уровень жидкости по отношению времён запаздывания вертикального и горизонтального сигналов. Примером такого уровнемера является измеритель уровня одоранта природного газа (меркаптана) в ёмкости, которая всегда закрыта, да ещё и закопана в землю.

Глава II. Arduino

Arduino – это инструмент для проектирования электронных устройств (электронный конструктор) более плотно взаимодействующих с окружающей физической средой, чем стандартные персональные компьютеры, которые фактически не выходят за рамки виртуальности. Это платформа, предназначенная для «physical computing» с открытым программным кодом, построенная на простой печатной плате с современной средой для написания программного обеспечения.

II.1. Применение.

Arduino применяется для создания электронных устройств с возможностью приема сигналов от различных цифровых и аналоговых датчиков, которые могут быть подключены к нему, и управления различными исполнительными устройствами. Проекты устройств, основанные на Arduino, могут работать самостоятельно или взаимодействовать с программным обеспечением на компьютере (напр.: Flash, Processing, MaxMSP). Платы могут быть собраны пользователем самостоятельно или куплены в сборе. Среда разработки программ с открытым исходным текстом доступна для бесплатного скачивания.