- •Система ориентирования в пространстве
- •Оглавление
- •Глава I. Эхолокация 4
- •Глава II. Arduino 13
- •Введение
- •Глава I. Эхолокация
- •I.1. История
- •I.2. Принципы эхолокации
- •I.3. Способы применения
- •I.4. Виды эхолокации.
- •I.5. Принцип измерения.
- •I.6. Виды приборов.
- •Глава II. Arduino
- •II.1. Применение.
- •II.2. Язык программирования.
- •II.3. Отличия от других платформ.
- •II.4. Широтно-импульсная модуляция.
- •III.1. Эксперимент.
- •III.2. Эксперимент.
- •III.2. Эксперимент.
- •В данной работе мы рассмотрели эхолокацию как явление в технике, медицине и животного мира. Изучили историю данного явления.
I.1. История
Эхолокация как явление в робототехнике и механике пришло из биологии. Её открытие связано с именем итальянского естествоиспытателя Ладзаро Спалланцани. Он обратил внимание на то, что летучие мыши свободно летают в абсолютно тёмной комнате, не задевая предметов. В своём опыте он ослепил несколько животных, однако и после этого они летали наравне со зрячими. Коллега Спалланцани Ж. Жюрин провёл другой опыт, в котором залепил воском уши летучих мышей, — и зверьки натыкались на все предметы. Отсюда учёные сделали вывод, что летучие мыши ориентируются по слуху. Однако эта идея была высмеяна современниками, поскольку ничего большего сказать было нельзя — короткие ультразвуковые сигналы в то время ещё было невозможно зафиксировать.
Впервые идея об активной звуковой локации у летучих мышей была высказана в 1912 году Х. Максимом. Он предполагал, что летучие мыши создают низкочастотные эхолокационные сигналы взмахами крыльев с частотой 15 Гц.
Об ультразвуке догадался в 1920 году англичанин Х. Хартридж, воспроизводивший опыты Спалланцани. Подтверждение этому нашлось в 1938 году благодаря биоакустику Д. Гриффину и физику Г. Пирсу. Гриффин предложил название эхолокация для именования способа ориентации летучих мышей при помощи ультразвука.
I.2. Принципы эхолокации
Эхолокация начинается с ультразвука, так узнаем же о нём побольше.
Как и многие другие физические явления, УЗ-волны обязаны своим открытием случаю. В 1876 г. английский физик Фрэнк Гальтон, изучая генерацию звука свистками особой конструкции (резонаторов Гельмгольца), носящими теперь его имя, обнаружил, что при определённых размерах камеры звук перестаёт быть слышимым. Можно было предположить, что звук просто не излучается, однако Гальтон сделал вывод, что звук не слышен потому, что его частота становится слишком высокой. Кроме физических соображений, в пользу этого вывода свидетельствовала реакция животных (прежде всего собак) на применение такого свистка.
Очевидно, что излучать ультразвук с помощью свистков можно, но не слишком удобно. Ситуация изменилась после открытия пьезоэффекта Пьером Кюри в 1880 г., когда появилась возможность излучать звук, не продувая резонатор потоком воздуха, а подавая на пьезокристалл переменное электрическое напряжение. Однако, несмотря на появление достаточно удобных источников и приёмников ультразвука (тот же пьезоэффект позволяет преобразовывать энергию акустических волн в электрические колебания) и на огромные успехи физической акустики как науки, связанной с такими именами, как Уильям Стрэтт (лорд Рэлей), ультразвук рассматривался в основном как объект для изучения, но не для применения.
I.3. Способы применения
Следующий шаг был сделан в 1912 г., когда всего через два месяца после гибели «Титаника» австрийский инженер Александр Бем создал первый в мире эхолот. Представьте себе, как могла измениться история! С этих пор и до настоящего времени УЗ-гидролокация остаётся незаменимым инструментом для надводных и подводных кораблей.
Ещё один принципиальный сдвиг в развитии УЗ-техники был сделан в 20-е гг. XX в.: в СССР были проведены первые эксперименты по прозвучиванию сплошного металла ультразвуком с приёмом на противоположном краю образца, причём регистрирующая техника была устроена так, что можно было получать двумерные теневые изображения трещин в металле, подобные рентгеновским (трубка С.А.Соколова). Так началась УЗ-дефектоскопия, позволяющая «увидеть невидимое».
Очевидно, что применение ультразвука не могло ограничиться лишь техническими приложениями. В 1925 г. выдающийся французский физик Поль Ланжевен, занимавшийся оснащением флота эхолотами, исследовал прохождение ультразвука через мягкие ткани человека и воздействие ультразвуковых волн на организм человека. Тот же С.А.Соколов в 1938 г. получил первые томограммы руки человека «на просвет». А в 1955 г. английские инженеры Ян Дональд и Том Браун построили первый в мире УЗ-томограф, в котором человек погружался в ванну с водой, а оператор с УЗ-излучателем и УЗ-приёмником должен был обходить объект исследований по кругу. Они же впервые применили к человеку принцип эхолокации и получили не просветную, а отражательную томограмму.
Следующие пятьдесят лет (практически до наших дней) можно охарактеризовать как эпоху проникновения ультразвука во всевозможные области технической и медицинской диагностики и применения ультразвука в технологических областях, где он позволяет сделать зачастую то, что невозможно в природе. Но об этом подробнее.
Пожалуй, наиболее важным применением эхолокации в технике является неразрушающий контроль конструкций (металлических, бетонных, пластмассовых) для выявления в них дефектов, вызванных механическими нагрузками. В простейшем случае дефектоскоп – это эхолокатор, на экране которого отображается эхограмма. Перемещая УЗ-датчик по поверхности контролируемого изделия, можно обнаруживать трещины. Обычно дефектоскоп снабжается набором УЗ-преобразователей, позволяющих вводить ультразвук в материал под разными углами, и звуковой сигнализацией превышения порога отражённым эхосигналом.
Среди металлоконструкций наиболее важным объектом неразрушающего контроля являются железнодорожные рельсы. Несмотря на значительные успехи внедрения средств автоматики, на железных дорогах России наиболее распространён ручной контроль. Многоканальный эхолокатор устанавливается на съёмную тележку, которую толкает оператор. УЗ-датчики устанавливаются в лыжи, скользящие по поверхности катания рельсов. Для обеспечения акустического контакта на тележке устанавливаются баки с контактной жидкостью (летом – вода, зимой – спирт). И шагают тысячи операторов по всем железным дорогам, толкая тележки, в снег и дождь, в жару и мороз... Требования к конструкции аппаратуры высоки – приборы должны работать в диапазоне температур от –40 до +50 °С, быть пылевлагонепроницаемыми, работать от аккумулятора. Первые отечественные рельсовые дефектоскопы в СССР были созданы 50 лет назад проф. А.К.Гурвичем в Ленинграде. Развитие вычислительной техники дало возможность в последнее десятилетие создать автоматизированные дефектоскопы, позволяющие не только обнаружить дефект, но и записать всю эхограмму пройденного пути для просмотра информации, её хранения и дальнейшего анализа в специальных центрах. Один из таких приборов – АДС-02 – был создан сотрудниками нашего ИПФ РАН совместно с фирмой «Медуза» и выпускается серийно Нижегородским заводом им. М.Фрунзе. К настоящему времени более 300 приборов работают на российских железных дорогах, помогая обнаруживать в год по несколько тысяч так называемых острых дефектов, каждый из которых может стать причиной крушения. За применение современных компьютерных технологий дефектоскоп АДС-02 получил в 2005 г. 1-е место на международном конкурсе разработчиков встраиваемых систем в Сан-Франциско (США).
УЗ-толщиномеры применяются для непрерывных измерений толщины листа (стального, стеклянного) при производстве, а также толщины объекта, к которому имеется доступ лишь с одной стороны (например, толщины стенки ёмкости или трубы). Здесь зачастую приходится иметь дело с очень малыми задержками, поэтому для повышения точности измерений применяют зацикливание эхолокатора: первый принятый эхосигнал сразу же запускает передатчик для излучения следующего импульса и т.д., при этом измеряют не время задержки, а частоту запуска.
Эхолоты, развитие которых началось почти сто лет назад, используются сейчас на самых разнообразных объектах, от надводных и подводных военных кораблей до надувных лодок рыбаков-любителей. Применение компьютеров позволило не просто отображать на экран эхолота профиль дна, но и распознавать тип отражающего объекта (рыба, топляк, сгусток ила и т.п.). С помощью эхолотов составляются карты профиля шельфа, были обнаружены суточные колебания глубины расположения слоя планктона в океане.
В отличие от рентгеновских и ЯМР-томографов (а также первых «просветных» УЗ-приборов) современные приборы для УЗ-исследования органов (УЗИ) работают в таком же режиме, как и их аналоги в технической диагностике, т.е. обнаруживают границы раздела сред с различными акустическими характеристиками. Различие между свойствами мягких тканей не превышает 10%, и лишь костные ткани дают почти 100%-ное отражение. Таким образом, почти всё богатство информации, получаемой медицинскими УЗ-приборами, заключается в анализе этих слабых сигналов.
Одно из первых применений одномерной локации в медицине – УЗ-эхоэнцефалоскоп. Идея его проста: получают эхограммы внутричерепных структур при зондировании головы в височной области слева и справа. Появление внутричерепных повреждений (гематом, опухолей) приводит к нарушению симметрии эхограмм, и таких пациентов легко выделить и направить на более детальное и дорогостоящее обследование.
Применение ультразвука в кардиологии привело к развитию важной для УЗИ технологии – представления эхограммы в координатах глубина-время, когда амплитуда сигнала представляется уровнем серого. Это позволило начать систематические неинвазивные исследования движения внутренних структур сердца и крупных сосудов и получить новую важную физиологическую информацию. Например, было доказано, что поперечное сечение аорты не меняется, как предполагали раньше врачи.
Первые кардиологические приборы были одномерными, и для исследования различных структур приходилось поворачивать датчик под разными углами. Впоследствии удалось автоматизировать этот процесс, и современные УЗ-приборы стали эхотомографами, т.е. позволяют получать двумерные сечения исследуемой области организма и наблюдать за быстрым движением структурных элементов сердца – клапанов, перегородок. В случае же неподвижных структур всё гораздо проще. Первые УЗ-томограммы были получены, когда не было сложной электроники и компьютеров, правда, для этого приходилось погружать человека в ванну с водой и обходить с одномерным датчиком по кругу. Сейчас применяют методы интерференции колебаний от множества маленьких элементов, позволяющих управлять направлением УЗ-пучка. Такое УЗ-исследование (УЗИ) органов и тканей стало обычной процедурой, несопоставимо более дешёвой, чем другие виды томографии.
В то же время остались частные применения одномерной УЗ-локации. Одним из них является измерение толщины жировой подкожной прослойки, что позволяет оценивать показатель степени ожирения, например, BFI. Этот метод реализован в приборе Bodymetrix2000 – совместной российско-американской разработке, который сейчас применяется в салонах красоты и фитнес-клубах по всему миру.
Пожалуй, наиболее интересными из сложных современных приборов для УЗ-медицинской диагностики являются трёхмерные системы. В этих системах УЗ-пучок поворачивается в двух взаимно перпендикулярных направлениях, а принятые эхосигналы обрабатываются так, чтобы получить изображение сплошной поверхности объекта, находящегося внутри организма человека, будь то внутренний орган или эмбрион. Если сбор и обработка информации происходят достаточно быстро, то можно наблюдать за движением объекта в реальном масштабе времени, например, изучать поведение ещё не родившегося ребёнка, его реакции и т.п., Пожалуй, единственный вопрос здесь – обеспечение безопасности, т.е. поддержание интенсивности УЗ-излучения на уровне 50–100 мВт/см2.
Ультразвуковая терапия и хирургия
Как и другие виды волн, ультразвук поглощается при распространении в вязкоупругой среде. Поглощённая энергия вызывает нагрев мягких тканей, который можно использовать для целей физиотерапии. В отличие от обычных источников тепла прогрев происходит за счёт поглощения ультразвука внутри тканей, а не за счёт их теплопроводности. Отличие от нагрева СВЧ-излучением заключается в направленности УЗ-пучка, т.к. длины волн ультразвука существенно короче. Поглощение ультразвука быстро растёт с увеличением частоты, что позволяет довольно сильно прогревать локальные участки тела, например, злокачественные опухоли. Интенсивность терапевтического ультразвука не превышает 3 Вт/см2.
В одной области физиотерапии, по-видимому, ультразвуку нет конкурентов. Речь идёт о лечении угревой сыпи и ряда сходных заболеваний. До сих пор ни один из методов лечения не дал 100%-ной гарантии выздоровления. Пожалуй, наиболее эффективным является обычный нагрев подкожной области на глубинах до 4–5 мм, когда пузырёк с выделениями сальной железы и бактериями просто вскипает и высушивается. Поверхностный нагрев приводит либо к ожогу, либо к увеличению длительности одной процедуры до нескольких минут. Лазерный нагрев оказывается неэффективным из-за сильного рассеяния оптического излучения в коже. В 2007 г. появились УЗ-приборы, работающие в диапазоне 15–20 МГц, которые показали хорошие результаты при клиническом тестировании и вскоре должны выйти на рынок косметических товаров.
Ещё более мощный ультразвук приводит к разрушению сплошной структуры мягких тканей. Это явление лежит в основе действия УЗ-скальпелей, позволяющих получать бескровный разрез (повреждённая кромка ткани запекается под воздействием УЗ-волны), что очень важно для многих хирургических операций. Но можно воспользоваться тем, что ультразвук довольно легко фокусируется, например, с помощью вогнутых излучателей, формирующих сходящийся волновой фронт. При этом вблизи поверхности тела интенсивность ультразвука не превышает диагностический уровень, а в фокусе достигает огромных значений, что позволяет, например, дробить камни в почках, не нарушая целостности окружающих тканей. В перспективе может быть создан хирургический инструмент для внутриполостных операций без разреза поверхности, работающий под управлением двумерного или трёхмерного эхолокатора.
Ультразвук и передача информации
Существование видов животных, способных воспринимать ультразвук, было открыто одновременно с самим ультразвуком (вспомните свисток Гальтона). Оказалось, что огромное количество биологических видов чувствительно к ультразвуку, по крайней мере в диапазоне 20–40 кГц. Это давно научились использовать для отпугивания грызунов (крыс, мышей), птиц, насекомых, собак. Однако не всё так просто. Например, грызуны достаточно быстро привыкают к наличию помехи, и приходится усложнять такие системы – в них частота и вид передачи ультразвука (длительность и период следования импульсов) делают случайными. Да и системы отпугивания насекомых иногда имеют прямо противоположный эффект, если выбрать неправильную частоту.
Гораздо более интересное открытие было сделано позднее – некоторые биологические виды не только чувствительны к ультразвуку, но могут его излучать и использовать для обнаружения целей и препятствий. Наиболее известны здесь летучие мыши и дельфины, издавна использующие физические и информационные принципы, которые человек научился применять лишь недавно. Например, долгое время оставалось загадкой, как летучая мышь может обнаруживать в темноте тонкие проволочки, натянутые в комнате (такие эксперименты проводил Р. Вуд). Впоследствии оказалось, что мозг летучей мыши проводит сложнейшую обработку информации, накопленной не за один цикл передачи-приёма звука, а за множество циклов при движении животного (такая процедура в радиолокации называется апертурным синтезом), увеличивая разрешающую способность своего «локатора» во много раз. Не исключено, что некоторые виды используют ультразвук и для передачи информации.
Говоря об информационных возможностях УЗ-волн, нельзя не упомянуть ещё одно интересное применение мощного фокусированного ультразвука: передачу речевой информации путём прямого воздействия на слуховой нерв. Пионерские исследования в этой области были начаты в 80-е гг. прошлого века проф. Л.Р. Гавриловым (г. Москва). Идея заключалась в следующем: высокочастотный (100–200 кГц) сигнал модулируется по амплитуде низкочастотным речевым сигналом и подаётся на фокусированный УЗ-излучатель, возбуждая модулированную волну. Излучатель прикладывается к поверхности головы так, чтобы фокус находился в области, где проходит слуховой нерв. При этом было обнаружено, что слуховой нерв становится «детектором», и человек начинает слышать модулирующий речевой сигнал. Конечно, этот метод может помочь не всем глухим людям, а лишь тем, глухота которых связана с нарушениями подвижности механической части слухового аппарата. Тем не менее эта технология в настоящее время применяется достаточно широко во всём мире.
