
- •34. Основные магнитные величины и законы электромагнитного поля.
- •35. Свойства и характеристики ферромагнитных материалов.
- •36. Применение закона полного тока для анализа и расчета магнитной цепи.
- •37. Расчет магнитной цепи с постоянной мдс.
- •38. Особенности расчета электромагнитных процессов в катушке с магнитопроводом и переменной мдс.
- •39. Потери в магнитопроводе при переменной мдс.
- •40. Схема замещения индуктивной катушки с ферромагнитным сердечником.
- •42. Устройство и принцип действия однофазного трансформатора.
- •43. Трансформация трехфазных токов и напряжений. Устройство трехфазного трансформатора.
- •44. Схемы и группы соединения трехфазных трансформаторов.
- •45. Автотрансформатором.
- •46. Измерительные трансформаторы.
- •47. Назначение и устройство машин постоянного тока.
- •48. Работа машины постоянного тока в режиме генератора.
- •49. Работа машин постоянного тока режиме двигателя.
- •50. Механические характеристики двигателя постоянного тока.
- •51. Пуск в ход двигателя постоянного тока.
- •Прямой пуск
- •Пуск с помощью пускового реостата или пусковых сопротивлений
- •Пуск при пониженном напряжении цепи якоря
- •52. Регулирование частоты вращения двигателя постоянного тока.
- •53. Устройство трехфазного асинхронного двигателя.
- •54. Принцип действия трехфазного асинхронного двигателя.
- •55. Механические характеристики асинхронного двигателя.
- •56. Пуск в ход асинхронного двигателя.
- •57. Регулирование скорости вращения асинхронного двигателя.
- •58. Однофазные асинхронные двигатели. Устройство и принцип действия.
- •59. Синхронные машины. Назначение и устройство.
- •60. Работа синхронной машины в режиме генератора
- •61. Характеристики синхронных генераторов.
- •62. Работа синхронной машины в режиме двигателя.
- •63. Регулирование коэффициента мощности с помощью синхронного двигателя.
- •64. Пуск в ход синхронного двигателя.
- •65. Устройство и принцип действия шагового двигателя.
- •66. Устройство и принцип действия синхронно-реактивного двигателя.
- •67. Полупроводниковые резисторы. Характеристики, параметры, назначение.
- •68. Диоды. Основные свойства и характеристики.
- •70. Транзисторы униполярные (полевые). Основные свойства и характеристики.
- •72. Интегральные микросхемы.
- •73. Фотоэлектрические полупроводниковые приборы.
- •74. Выпрямительные устройства.
- •75. Однофазные выпрямители.
- •76. Трехфазные выпрямители.
- •77. Управляемые выпрямители.
- •78. Тиристорные регуляторы напряжения.
- •79. Автономные инверторы.
- •80. Преобразователи частоты.
- •81. Усилительный каскад на биполярном транзисторе.
- •82. Режимы работы усилительного каскада и температурная стабилизация.
- •83. Многокаскадные усилители напряжения.
- •84. Усилители мощности.
- •85. Усилители постоянного тока. Дифференциальные каскады усиления. Общие сведения
- •5.2. Способы построения упт
- •5.3. Дифференциальные усилители
- •5.4. Схемы включения ду
- •5.5. Точностные параметры ду
- •86. Операционные усилители.
- •Обозначения
- •Основы функционирования Питание
- •Простейшее включение оу
- •Идеальный операционный усилитель
- •Простейший неинвертирующий усилитель на оу
- •Отличия реальных оу от идеального
- •Параметры по постоянному току
- •Параметры по переменному току
- •Нелинейные эффекты:
- •87. Электронные ключи.
- •Электронные ключи на биполярных транзисторах
- •Электронные ключи на полевых транзисторах
- •88. Основные логические операции и элементы их реализующие.
- •89. Триггеры.
- •Синхронные rs-триггеры
- •Явление метастабильности.
- •D триггеры, работающие по фронту.
- •90. Счетчики импульсов.
- •91. Регистры.
- •Параллельные регистры
- •92. Шифраторы. Дешифраторы.
- •93. Аналого-цифровые преобразователи.
- •94. Цифро-аналоговые преобразователи.
- •95. Микропроцессоры.
- •96. Микропроцессорные системы и микроЭвм.
- •Универсальные
- •Специализированные
- •Серверы
- •Рабочая станция
- •97. Магнитоэлектрические измерительные приборы.
- •98. Электромагнитные измерительные приборы.
- •99. Электродинамические измерительные приборы.
- •100. Измерение электрических токов, напряжений, сопротивлений, мощности и энергии.
- •101. Измерение электрических напряжений.
- •102. Измерение электрических сопротивлений.
- •103. Измерение мощности и энергии в электрических цепях.
- •104. Мультиплексоры и демультиплексоры.
48. Работа машины постоянного тока в режиме генератора.
Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток
где U - напряжение на зажимах генератора; Rя - сопротивление обмотки якоря.
(1)
Уравнение (1) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы. На рис. 1 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.
Воспользовавшись
правилом левой руки, видим, что
электромагнитные силы создают
электромагнитный момент Мэм,
препятствующий вращению якоря
генератора.
Чтобы
машина работала в качестве генератора,
необходимо первичным двигателем вращать
ее якорь, преодолевая тормозной
электромагнитный момент.
Рис. 1 Генераторы с независимым возбуждением.
Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов. Схема генератора с независимым возбуждением показана на рис. 2.Магнитное поле генераторов с независимым возбуждением может создаваться от постоянных магнитов (рис. 3).
Рис.
2
Рис. 3
Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв). Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const) Характеристика холостого хода генератора показана на рис. 4. Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю. При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально. Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса. Зависимость напряжения на внешних зажимах машины от величины тока нагрузки U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.
Внешняя характеристика генератора изображена на рис. 5.
Рис.
4
Рис.
5
С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке. Принцип самовозбуждения генератора с параллельным возбуждением
Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора. Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 6 изображен генератор с параллельным возбуждением.
Обмотка
возбуждения подключена параллельно
якорной обмотке. В цепь возбуждения
включен реостат Rв.
Генератор работает в режиме холостого
хода.
Чтобы генератор
самовозбудился, необходимо выполнение
определенных условий.
Первым из этих условий является
наличие остаточного магнитного потока
между полюсами. При вращении якоря
остаточный магнитный поток индуцирует
в якорной обмотке небольшую
Рис. 6 остаточную ЭДС
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения. Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 7 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт - амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв - падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ Rв).
Ток
обмотки возбуждения увеличивает
магнитный поток полюсов при согласном
включении обмотки возбуждения. ЭДС,
индуцированная в якоре, возрастает, что
приводит к дальнейшему увеличению тока
обмотки возбуждения, магнитного потока
и ЭДС. Рост ЭДС
Рис. 7 от тока возбуждения замедляется при насыщении магнитной цепи машины.
Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме. Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт - амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.