
- •34. Основные магнитные величины и законы электромагнитного поля.
- •35. Свойства и характеристики ферромагнитных материалов.
- •36. Применение закона полного тока для анализа и расчета магнитной цепи.
- •37. Расчет магнитной цепи с постоянной мдс.
- •38. Особенности расчета электромагнитных процессов в катушке с магнитопроводом и переменной мдс.
- •39. Потери в магнитопроводе при переменной мдс.
- •40. Схема замещения индуктивной катушки с ферромагнитным сердечником.
- •42. Устройство и принцип действия однофазного трансформатора.
- •43. Трансформация трехфазных токов и напряжений. Устройство трехфазного трансформатора.
- •44. Схемы и группы соединения трехфазных трансформаторов.
- •45. Автотрансформатором.
- •46. Измерительные трансформаторы.
- •47. Назначение и устройство машин постоянного тока.
- •48. Работа машины постоянного тока в режиме генератора.
- •49. Работа машин постоянного тока режиме двигателя.
- •50. Механические характеристики двигателя постоянного тока.
- •51. Пуск в ход двигателя постоянного тока.
- •Прямой пуск
- •Пуск с помощью пускового реостата или пусковых сопротивлений
- •Пуск при пониженном напряжении цепи якоря
- •52. Регулирование частоты вращения двигателя постоянного тока.
- •53. Устройство трехфазного асинхронного двигателя.
- •54. Принцип действия трехфазного асинхронного двигателя.
- •55. Механические характеристики асинхронного двигателя.
- •56. Пуск в ход асинхронного двигателя.
- •57. Регулирование скорости вращения асинхронного двигателя.
- •58. Однофазные асинхронные двигатели. Устройство и принцип действия.
- •59. Синхронные машины. Назначение и устройство.
- •60. Работа синхронной машины в режиме генератора
- •61. Характеристики синхронных генераторов.
- •62. Работа синхронной машины в режиме двигателя.
- •63. Регулирование коэффициента мощности с помощью синхронного двигателя.
- •64. Пуск в ход синхронного двигателя.
- •65. Устройство и принцип действия шагового двигателя.
- •66. Устройство и принцип действия синхронно-реактивного двигателя.
- •67. Полупроводниковые резисторы. Характеристики, параметры, назначение.
- •68. Диоды. Основные свойства и характеристики.
- •70. Транзисторы униполярные (полевые). Основные свойства и характеристики.
- •72. Интегральные микросхемы.
- •73. Фотоэлектрические полупроводниковые приборы.
- •74. Выпрямительные устройства.
- •75. Однофазные выпрямители.
- •76. Трехфазные выпрямители.
- •77. Управляемые выпрямители.
- •78. Тиристорные регуляторы напряжения.
- •79. Автономные инверторы.
- •80. Преобразователи частоты.
- •81. Усилительный каскад на биполярном транзисторе.
- •82. Режимы работы усилительного каскада и температурная стабилизация.
- •83. Многокаскадные усилители напряжения.
- •84. Усилители мощности.
- •85. Усилители постоянного тока. Дифференциальные каскады усиления. Общие сведения
- •5.2. Способы построения упт
- •5.3. Дифференциальные усилители
- •5.4. Схемы включения ду
- •5.5. Точностные параметры ду
- •86. Операционные усилители.
- •Обозначения
- •Основы функционирования Питание
- •Простейшее включение оу
- •Идеальный операционный усилитель
- •Простейший неинвертирующий усилитель на оу
- •Отличия реальных оу от идеального
- •Параметры по постоянному току
- •Параметры по переменному току
- •Нелинейные эффекты:
- •87. Электронные ключи.
- •Электронные ключи на биполярных транзисторах
- •Электронные ключи на полевых транзисторах
- •88. Основные логические операции и элементы их реализующие.
- •89. Триггеры.
- •Синхронные rs-триггеры
- •Явление метастабильности.
- •D триггеры, работающие по фронту.
- •90. Счетчики импульсов.
- •91. Регистры.
- •Параллельные регистры
- •92. Шифраторы. Дешифраторы.
- •93. Аналого-цифровые преобразователи.
- •94. Цифро-аналоговые преобразователи.
- •95. Микропроцессоры.
- •96. Микропроцессорные системы и микроЭвм.
- •Универсальные
- •Специализированные
- •Серверы
- •Рабочая станция
- •97. Магнитоэлектрические измерительные приборы.
- •98. Электромагнитные измерительные приборы.
- •99. Электродинамические измерительные приборы.
- •100. Измерение электрических токов, напряжений, сопротивлений, мощности и энергии.
- •101. Измерение электрических напряжений.
- •102. Измерение электрических сопротивлений.
- •103. Измерение мощности и энергии в электрических цепях.
- •104. Мультиплексоры и демультиплексоры.
55. Механические характеристики асинхронного двигателя.
Зависимость электромагнитного момента от скольжения.
Наибольшее значение для оценки свойств асинхронного двигателя имеет механическая характеристика, представляющая собой графическую зависимость частоты вращения ротора п2от вращающего момента М, т. е. п2 = f(M) или М = f(n2). Иногда эта зависимость выражается в виде M = f(s) или М = f(v), где v = п2/п1 - относительная частота вращения. При этом
(1)
s = (n1 - n2 )/n1 = 1 — v.
Использование понятий относительной частоты вращения и скольжения придает механической характеристике более общий характер. Для построения механической характеристики можно воспользоваться круговой диаграммой либо формулой
(2)
М = m1U12R'2 /ω1 s[(R1+ C1 R'2 /s)2 + (X1 + C1 X'2 )2],
получаемой из формулы
М = ΔРэл2 /(ω1 s) = m1 I22R'2 /ω1 s
путем подстановки значения тока I'2 из схемы замещения:
I'2 - U1 /√(R1+ C1 R'2 /s)2 + (X1 + C1 X'2 )2
Для машин мощностью более 10 кВт величина С1 ≈ 1 и формула момента приобретают более простой вид:
(2a)
М = m1 U12R'2 /ω1 s[(R1+ R'2 /s)2 + (X1 + X'2 )2].
Задаваясь значениями s, при известных параметрах двигателя можно определить М и построить искомую механическую характеристику.
Механическая характеристика (рис. 1, а и б) имеет максимум момента при частоте вращенияn2 ≈ (0,8 ÷ 0,9) n1; при частоте вращения n2 = n1 момент вращения М = 0, а при n2 = 0 пусковой момент составляет Мп = (0,3 ÷ 0,7) Mmax.
Скольжение, при котором момент имеет максимальное значение (критическое скольжение), можно определить из (2), взяв производную от момента по скольжению dM/ds и приравняв ее нулю.
Решая уравнение относительно s, получаем критическое скольжение:
(3)
sкр = ± C1 R'2 /√R12 + (X1 + C1 X'2 )2.
|
Рис. 1. Механическая характеристика асинхронной машины |
В первом приближении, принимая C1 = 1,0 и пренебрегая величиной R1 в знаменателе [так какR1 < (X1 + X'2)], имеем
(3a)
sкр = ± R'2 /(X1 + X'2 ).
Для получения высокого КПД необходимо снижать величину R2, вследствие чего максимум момента асинхронного двигателя достигается при относительно высоких частотах вращения. Значение максимального момента получим из (4.46), подставив значение sкр из (3):
(4)
Мmax = ± mU12/{2ω1 C1 [± R1 + √R12 + (X1 + C1 X'2 )2]},
или, приближенно считая С1 = 1и R1 = 0,
(4a)
Мmax ≈ ± m1 U12/[2ω1 /(X1 + X'2 )].
|
Рис. 2. Зависимость электромагнитного момента и тока ротора от скольжения |
Знак «+» относится к двигательному режиму, «-» - к генераторному.
Из уравнения (4) и круговой диаграммы видно, что максимальный момент не зависит от активного сопротивления ротора. Это сопротивление определяет лишь скольжение при максимальном моменте.
При увеличении скольжения от s = 0 до 1, как следует из круговой диаграммы, ток ротора I'2 монотонно возрастает, в то время как электромагнитный момент М сначала увеличивается с ростом скольжения, достигает максимума при s = sкр, а затем уменьшается, несмотря на возрастание токаI'2 (рис. 2).
Физически это объясняется тем, что в формуле момента М = смФтI2 х cos ψ2 при малых сколь жениях преобладающее влияние имеет возрастание тока I2. При увеличении скольжения свыше sкр ток I2возрастает сравнительно мало и преобладающее влияние оказывает уменьшение cos ψ2, которое происходит вследствие повышения частоты в роторе: f2 = sf1 .
Построение механической характеристики по каталожным данным. На практике широко используют приближенное аналитическое выражение механической характеристики. Электромагнитный момент асинхронного двигателя
(5)
М = ΔРэл2 /(ω1 s) = m2 I22R2 /(ω1 s) =m2 sE22R2 /[ω1 (R22 + s2X22)].
Принимая приближенно E2 ≈ const, т. е. считая, что магнитный поток машины при изменении нагрузки не изменяется, и приравнивая нулю производную dM/ds, полученную из формулы (5), можно найти критическое скольжение, соответствующее максимальному моменту, sкр = ±R2 /X2 и соответственно максимальный момент
(6)
Мmax = ± т2 E22/(2ω1 X2 ).
Разделив выражение (5) на (6), после преобразования получим
(7)
M/Мmax = 2/(sкр /s + s/sкр ).
Формула (7) является приближенной и, конечно, дает погрешность, так как не учитывает падение напряжения в обмотках статора. Особенно велика погрешность при переходе из двигательного режима в генераторный, где разница в моментах может быть существенной. Однако для исследования одного режима выведенная формула дает приемлемую точность. Это объясняется тем, что в области малых скольжений от s = 0 до sкр магнитный поток изменяется незначительно и, следовательно, в этой области формула не может дать большой погрешности, тем более, что точки при s = 0 и sкр являются фиксированными.
При скольжениях, близких к единице, формула (7), казалось бы, должна давать завышенные значения момента, гак как при больших токах сильнее проявляется падение напряжения в статоре. Однако в реальных машинах при скольжениях, близких к единице, уменьшается сопротивление Х2 из-за явления вытеснения тока в проводниках ротора, что ведет к увеличению момента. В результате оказывается, что погрешность, обусловленная пренебрежением падения напряжения в статоре, и погрешность, вызванная изменением параметров ротора, взаимно противоположны, вследствие чего точность приближенной формулы (7) достаточна для практических целей.