Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_Integralnoe_ischislenie.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
190.13 Кб
Скачать

Интегральное исчисление

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Первообразная функция

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F(x) = f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

Неопределенный интеграл

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4. где u, v, w – некоторые функции от х.

Таблица интегралов

Таблица 1 – Интегралы некоторых элементарных функций

Интеграл

Значение

Интеграл

Значение

1

-lncosx+C

9

ex + C

2

lnsinx+ C

10

sinx + C

3

11

-cosx + C

4

12

tgx + C

5

13

-ctgx + C

6

ln

14

arcsin + C

7

15

8

16

7.4. Методы интегрирования

Рассмотрим три основных метода интегрирования.

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования можно сделать вывод, что искомый интеграл равен , где С – некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Пример. Найти неопределенный интеграл .

Сделаем замену t = sinx, dt = cosxdt.

Интегрирование по частям.

Способ основан на применении формулы интегрирования по частям ;

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Вопросы для самоконтроля

  1. Что такое первообразная функция?

  2. Какими свойствами обладает неопределённый интеграл?

  3. Чему равен неопределенный интеграл функции lnx?

  4. В чем суть метода подстановки (замены переменной) в неопределенном интеграле?

  5. В чем состоит метод неопределенных коэффициентов при интегрировании рациональныхдробей?

Определенный интеграл Понятие определенного интеграла

Пусть на отрезке [a, b] задана непрерывная функция f(x).

y

M

m

0 a xi b x

Рисунок 1. Составление интегральной суммы.

Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.

x0 < x1 < x2 < … < xn

Тогда x1 – x0 = x1, x2 – x1 = x2, … ,xn – xn-1 = xn;

Внутри каждого отрезка выберем некоторую точку .

x0 < 1 < x1, x1 <  < x2, … , xn-1 <  < xn.

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(1)x1 + f(2)x2 + … + f(n)xn =

Определение: Если при любых разбиениях отрезка [a, b] и произвольном выборе точек i интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

Обозначение :

а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.