- •Теоретические вопросы
- •Раздел 1. Линейная алгебра. Векторная алгебра.
- •Раздел 2. Введение в анализ
- •Раздел 3. Элементы теории вероятностей.
- •Раздел 1. Линейная алгебра. Векторная алгебра.
- •Понятие матрицы, типы матриц
- •2.Операции с матрицами (сложение, умножение на число, умножение матрицы на матрицу, транспортирование матриц). Свойства операций.
- •Свойства линейных операций: Везде далее матрицы , и - матрицы одного размера.
- •Свойства транспонирования матриц:
- •3.Определители матриц, их свойства.
- •4.Разложение определителя по элементам любой строки, столбца.
- •5.Обратная матрица. Критерий ее существования и формула для вычисления.
- •Методы вычисления обратной матрицы Вычисление обратной матрицы с помощью присоединённой матрицы
- •6.Системы линейных алгебраических уравнений (слау).
- •7.Совместные, несовместные, определенные, неопределенные слау.
- •8. Формулы Крамера для решения слау.
- •Примеры решения систем уравнений
- •9. Матричный метод решения слау.
- •Матричный метод решения
- •Минор матрицы, ранг матрицы. Минор
- •Алгебраическое дополнение
- •Ранг матрицы Ранг системы строк и столбцов матрицы
- •Ранг матрицы
- •Метод окаймления миноров
- •Элементарные преобразования матриц, эквивалентные матрицы и их ранги.
- •Примеры элементарных преобразований
- •Линейно зависимые, линейно независимые строки матрицы. Критерий линейной зависимости.
- •Линейно зависимые и независимые строки
- •Критерий линейной зависимости (теорема).
- •Критерий совместности слау Кронекера-Капелли.
- •Метод Гаусса решения слау. Базисный минор, базисные и свободные переменные слау.
- •Формулировка теоремы о базисном миноре
- •Линейные операции над векторами, их свойства, проекция вектора на ось.
- •Операция сложения векторов обладает следующими свойствами:
- •Свойства умножения вектора на число:
- •Проекция вектора на ось
- •Свойства проекции векторов
- •Системы координат на плоскости.
- •Базис на плоскости и в пространстве: определения и теоремы; координаты вектора в данном базисе, разложение вектора по ортам, направляющие косинусы вектора.
- •Раздел 2. Введение в анализ
- •Множества и операции над ними.
- •2.Предел числовой последовательности: определение, свойства.
- •3.Определение предела функции, основные свойства пределов.
- •4. Первый и второй замечательный пределы.
- •5. Бесконечно-малые и бесконечно-большие функции. Сравнение бесконечно малых функций.
- •6. Определение производной функции, ее физический и геометрический смысл.
- •7. Уравнения касательной и нормали к кривой
- •8. Правила дифференцирования, производные основных элементарных функций; показательно-степенной функции; функций, заданных неявно и параметрически.
- •9. Определение неопределенного интеграла, его свойства, таблица простейших интегралов. Замена переменной в неопределенном интеграле.
- •10.Определение определенного интеграла, его физический и геометрический смысл
- •11. Свойства определенного интеграла.
- •12. Формула Ньютона-Лейбница
- •13. Приложения определенного интеграла.
- •Раздел 3. Элементы теории вероятностей
- •1. Комбинаторные правила суммы и умножения, перестановки. Размещения. Сочетания.
- •2. Классическое и геометрическое определение вероятности.
- •3. Операции над случайными событиями. Теоремы сложения вероятностей.
- •4. Зависимые и независимые события. Условная вероятность. Теоремы умножения вероятностей.
- •5. Формула полной вероятности.
- •6. Формула Бернулли.
- •7. Дискретные случайные величины, ряд распределения, числовые характеристики..
- •Числовые характеристики дискретных случайных величин
- •8. Непрерывные случайные величины, дифференциальный и интегральный законы распределения, числовые характеристики.
- •9. Статастическиое распределение выборки. Определение статистической и конкурирующей гипотезы, критерии согласия
- •10. Определения точечных и интервальной оценок параметров распределения, несмещенная оценка математического ожидания, доверительный интервал
5. Бесконечно-малые и бесконечно-большие функции. Сравнение бесконечно малых функций.
Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.
Бесконечно большая — числовая функция или последовательность, которая стремится к бесконечности определённого знака.
Сравнение бесконечно малых
Определения[править | править вики-текст]
Допустим,
у нас есть бесконечно малые при одном
и том же
величины
и
(либо,
что не важно для определения, бесконечно
малые последовательности).
Если
,
то
—
бесконечно малая высшего
порядка малости,
чем
.
Обозначают
или β≺α.Если
,
то
—
бесконечно малая низшего
порядка малости,
чем
.
Соответственно
или α≺β.Если
(предел
конечен и не равен 0), то
и
являются
бесконечно малыми величинами одного
порядка малости.
Это обозначается какα≍β или
как одновременное выполнение
отношений
и
.
Следует заметить, что в некоторых
источниках можно встретить обозначение,
когда одинаковость порядков записывают
в виде только одного отношения «о
большое», что является вольным
использованием данного символа.Если
(предел
конечен и не равен 0), то бесконечно
малая величина
имеет
-й
порядок малости относительно
бесконечно малой
.
Для вычисления подобных пределов удобно использовать правило Лопиталя.
Примеры сравнения[править | править вики-текст]
При
величина
имеет
высший порядок малости относительно
,
так как
.
С другой стороны,
имеет
низший порядок малости относительно
,
так как
.
С
использованием О-символики полученные
результаты могут быть записаны в
следующем виде
.
то
есть при
функции
и
являются
бесконечно малыми величинами одного
порядка.
В
данном случае справедливы записи
и
При бесконечно малая величина
имеет
третий порядок малости относительно
,
поскольку
,
бесконечно малая
—
второй порядок, бесконечно малая
—
порядок 0,5.
6. Определение производной функции, ее физический и геометрический смысл.
Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ееаргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождениепервообразной — интегрирование.
Геометрический и физический смысл производной[править | править вики-текст]
Тангенс угла наклона касательной прямой[править | править вики-текст]
Геометрический смысл производной. Награфике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Основная статья: Касательная прямая
Если
функция
имеет
конечную производную в точке
то
в окрестности
её
можно приблизить линейной
функцией
Функция
называется
касательной к
в
точке
Число
является
угловым коэффициентом (угловым
коэффициентом касательной)
или тангенсом угла наклона
касательной прямой.
Скорость изменения функции[править | править вики-текст]
Пусть
—
закон прямолинейного движения.
Тогда
выражает мгновенную
скорость движения
в момент времени
Вторая
производная
выражает мгновенное
ускорение в
момент времени
Вообще
производная функции
в
точке
выражает
скорость изменения функции в точке
,
то есть скорость протекания процесса,
описанного зависимостью
