- •Министерство сельского хозяйства Российской Федерации Федеральное государственное образовательное учреждение
- •Афонин в.В., Бондаренко ю.В., Белов в.С.
- •Допущено
- •Рецензенты:
- •Предисловие
- •Краткая история, перспективы и пути развития дождевой канализации
- •Глава 1
- •1.2. Сравнительная технико-экономическая и экологическая оценка систем водоотведения
- •1.3. Типизация водоотводов
- •1.4. Назначение и область применения сооружений на сетях водоотвода
- •1.5. Расположение и конструкция дождеприемников
- •Длина присоединения от дождеприемников к коллекторам должна быть не более 40 м, диаметр – не менее 200 мм. Дождеприемники обязательно устанавливаются на перекрестках улиц, не доходя до “зебры”.
- •1.6. Смотровые колодцы, соединительные камеры и промывные колодцы
- •1.7. Перепадные колодцы
- •1.8. Дюкеры
- •1.9. Разделительные камеры
- •Камеры с водосливами
- •Камеры с вертикальными разделительными стенками
- •Параметры работы разделительных камер
- •1.10. Регулирующие резервуары
- •1.11. Выпуски сточных вод в водоемы
- •1.12. Конструкции труб и коллекторов
- •1.13. Трассировка дождевых коллекторов
- •1.14. Размещение водоотводящих сетей на плане и в поперечном профиле улиц
- •Глубина заложения труб водоотводящих сетей должна быть не более глубины промерзания грунта, но не менее 1 м (по нагрузке от транспорта).
- •1.15. Основные правила конструирования водоотводящей сети
- •1.16. Минимальные диаметры труб. Степень наполнения труб и каналов
- •1.17. Расчетные скорости движения. Минимальные уклоны трубопроводов, лотков и каналов
- •1.18. Основные правила назначения уклонов трубопровода
- •1.19. Сопряжение трубопроводов
- •1.20. Водоотвод с автомобильных дорог
- •Глава 2 основы формирования поверхностного стока и определение расчетных расходов водостоков
- •2.1. Основные закономерности выпадения дождей
- •2.2. Распределение осадков по площади и продолжительности
- •2.3. Формирование дождевого стока
- •2.4. Расчетные расходы дождевых вод
- •2.4.1. Метод предельных интенсивностей
- •2.4.2. Коэффициент стока
- •2.4.3. Расчетная интенсивность дождя
- •2.4.4. Определение расчетных расходов дождевых вод
- •2.5. Сток талых и поливомоечных вод
- •2.6. Приток инфильтрационных вод
- •Глава 3 проектирование и расчет водоотводящих сетей
- •3.1. Основные исходные данные для проектирования
- •Водоотводящих сетей
- •3.2. Стадии проектирования
- •3.3. Гидравлический расчет дождевой сети
- •3.4. Гидравлический расчет дождепремников
- •3.5. Гидравлический расчет перепадных колодцев
- •3.5.1. Расчет перепада с водосливом практического профиля
- •3.5.2. Расчет трубчатых перепадов
- •3.5.3. Расчет перепадного колодца с отбойно-водосливной стенкой
- •3.5.4. Расчет шахтных многоступенчатых перепадов
- •3.6. Гидравлический расчет дюкеров
- •3.7. Расчет водоотвода с автомобильных дорог
- •3.8. Гидравлический расчет самотечных трубопроводов
- •3.8.1. Учет местных сопротивлений при гидравлическом расчете водоотводящих сетей
- •3.9 Напорный режим работы дождевой сети
- •3.10. Мероприятия по защите труб от разрушения
- •Глава 4 очистка поверхностного стока
- •4.1. Характеристика загрязненности поверхностного стока
- •4.1.1. Обобщенные показатели загрязненности сточных вод
- •4.1.2. Динамика загрязненности дождевого стока
- •4.1.3. Укрупненные расчетные показатели по загрязнениям поверхностных вод
- •4.2. Условия сброса поверхностных вод в водные объекты
- •4.3. Требования к степени очистки поверхностного стока
- •4.4. Схемы очистки поверхностного стока
- •Степень очистки безнапорным сорбционным фильтром
- •В качестве примера может служить Саратовская нефтебаза, для которой реализован проект, включающий пескоуловитель, нефтеуловитель, сорбционный фильтр.
- •4.5. Основы расчета очистных сооружений
- •Расчет очистных сооружений прудов-отстойников
- •4.5.2. Расчет отстойных очистных сооружений
- •Заключение
- •Список литературы
2.4.2. Коэффициент стока
Не вся вода, выпавшая на территорию водосбора в виде осадков, превращается в сток. Выделяют следующие виды потерь осадков:
1. Потери на перехват – происходят прежде всего в лесных массивах и составляют примерно 2…10 мм.
2. Испарение - в период дождя имеет небольшую интенсивность – до 0,3 мм/ч, однако продолжается и после прекращения выпадения осадков.
3. Поверхностное задержание – это потери воды на образование пленки и заполнение бессточных неровностей, составляет для песков до 5 мм, для глин – 2,5 мм, для мостовых – 1,6 мм.
4. Инфильтрация в грунт – просачивание осадков. За период выпадения ливня инфильтрация постепенно уменьшается по мере наполнения пор водой. Это процесс можно выразить зависимостью:
,
(2.9)
где
интенсивность
инфильтрации осадков в грунт, мм/ч;
начальная
интенсивность инфильтрации, мм/ч;
установившаяся
интенсивность инфильтрации, мм/ч; t
– время, ч; k
– коэффициент снижения инфильтрации.
Для песчаных слоев инфильтрация к концу первого часа составляет 13…25 мм/ч, для глинистых – 0,4- 0,8 мм/ч.
Осадки, достигающие дождеприемников, характеризуются общим слоем (объемом) стока.
Отношение объема поверхностного стока на водосборе в течение одного ливня к общему объему осадков, выпавших за время этого ливня, называется коэффициентом поверхностного стока Ψ. Для оценки годовых средних объемов стока используют коэффициент годового стока Ψг:
Ψг = Wг/Wг.ос, (2.10)
где Wг – годовой объем стока, м3; Wг.ос – годовой объем осадков, м3.
Годовой объем стока:
, (2.11)
где F – площадь стока, га; s0 – количество дождей за теплый период, hр – высота суточного слоя дождевого стока, ее можно определить по формуле Г.А. Алексеева [1]:
,
(2.12)
где Hр – высота суточного слоя осадков, мм; H0 – высота слоя начальных потерь, мм.
Годовой объем осадков:
Wг.ос = 10∙Hг∙F, (2.13)
где Hг – годовой слой осадков, мм.
Для конкретных расчетов расходов дождевых вод в водоотводящей сети используют еще один вид коэффициента стока – Ψ0, который учитывает поверхностное задержание и инфильтрацию, а также учитывает гидродинамику поступления воды к расчетному сечению. Коэффициент стока в этом случае представляет собой отношение максимальной интенсивности стока определенной повторяемости к средней интенсивности осадков той же повторяемости в предположении соблюдения водного баланса на водосборе, т.е. долю интенсивности осадков, за счет которой достигается максимум стока.
Еще до Великой Отечественной войны Н.И.Беловым была предложена простая формула для определения коэффициента стока, которая и рекомендована нормами [1]:
Ψ0 = zq0,2t0,1, (2.14)
где z - эмпирический коэффициент, зависящий от вида поверхности стока – коэффициент покрова; q – интенсивность дождя, л/с на 1 га; t – продолжительность выпадения дождя, мин.
Г.А. Алексеев предложил другую формулу для коэффициента стока:
(2.15)
Значения коэффициента покрова z представлены в приложении 2 (табл. 1 и 2). Например, значение z для водонепроницаемых поверхностей (кровля зданий, асфальтобетон дорог и т.д.) принимается в зависимости от параметра A. Для водопроницаемых поверхностей коэффициент покрова постоянен, например, для газонов он равен 0,0038, для гравийных дорожек – 0,09 и т.д.
При необходимости расчета коэффициента покрова для территории, имеющей различные виды поверхностей, следует принимать средневзвешенное значение zmid:
zmid = Σ(Fizi/Fобщ), (2.16)
где Fi – площадь i-того вида покрытия, га; Fобщ – общая площадь территории, га; zi – коэффициент покрова i-того вида покрытия.
Величина коэффициента стока Ψ0 может приниматься постоянной (≈ 1), если водонепроницаемые поверхности крыш и асфальтовые покрытия составляют более 50 % всей площади.
