Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_po_MORu.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.75 Mб
Скачать

Виноградова Татьяна, Н-2-2

Теоретическая часть. Методы оптимальных решений

1.Сформулируйте геометрическую интерпретацию игры 2х2

Решение игры 2×2 допускает наглядную геометрическую интерпретацию. Пусть игра задана платежной матрицей Р = (aij), i, j = 1, 2. По оси абсцисс (рис. 3.1) отложим единичный отрезок AA2 точка A1(х=0)изображает стратегию A1, а все промежуточные точки этого отрезка — смешанные стратегии SA первого игрока, причем расстояние от SA до правого конца отрезка — это вероятность p1 стратегии A1, расстояние до левого конца — вероятность p2 стратегии A2. На перпендикулярных осях II и IIII откладываем выигрыши при стратегиях A1 и A2 соответственно. Если 2-й игрок примет стратегию B1, то она дает выигрыши a11 и a21 на осях II и IIII, соответствующие стратегиям A1 и A2. Обозначим эти точки на осях I—I и II—II буквой B1. Средний выигрыш v1, соответствующий смешанной стратегии SA, определяется по формуле математического ожидания v1 = a11 p1 + a21 p2   и равен ординате точки M1, которая лежит на отрезке BB1 и имеет абсциссу SA (рис. 3.1).

Рис. 3.1

Рис. 3.2

Аналогично строим отрезок B2B2, соответствующий применению вторым игроком стратегии B2 (Рис. 3.2). При этом средний выигрыш v2 = a12 p1 + a22 p— ордината точки M2.  В соответствии с принципом минимакса оптимальная стратегия S*A такова, что минимальный выигрыш игрока А (при наихудшем поведении игрока В) обращается в максимум. Ординаты точек, лежащих на ломаной (рис. 3.3 в примере 3.4.1), показывают минимальный выигрыш игрока А при использовании им любой смешанной стратегии (на участке BN — против стратегии B, на участке NB2 — против стратегии B2). Оптимальную стратегию S*A = ( p* p*2 ) определяет точка N, в которой минимальный выигрыш достигает максимума; ее ордината равна цене игры v

2.Как изменится оптимальное решение транспортной задачи при малом изменении потребностей или ресурсов?

Транспортная задача, в которой суммарные запасы

                                              

и суммарные потребности

                                              

совпадают, называется закрытой моделью;  в противном случае - открытой. Открытая модель решается приведением к закрытой.

            В случае, когда суммарные запасы превышают суммарные

потребности, т.е.

                                              

вводится фиктивный n+1 потребитель, потребности которого

                                              

В случае, когда суммарные потребности превышают суммарные

запасы,  т.е.

                                              

, вводится фиктивный m+1 поставщик, запасы которого

                                              

Стоимость перевозки единицы груза как до фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика

полагают равными нулю, так как груз в обоих случаях не перевозится.

3.Сформулируйте экономический смысл двойственной задачи злп.

С экономической точки зрения двойственную задачу можно интерпретировать так: какова должна быть цена единицы каждого из ресурсов, чтобы при заданных количествах ресурсов bi и величинах стоимости единицы продукции Cj минимизировать общую стоимость затрат? А исходную задачу определим следующим, образом: сколько и какой продукции xj(j =1,2,…, n) необходимо произвести, чтобы при заданных стоимостях Cj (j=1,2,…, n) единицы продукции и размерах имеющихся ресурсов bi(i=1,2,…, n) максимизировать выпуск продукции в стоимостном выражении. Большинство задач линейного программирования изначально определяются как исходные или двойственные задачи. Сделав вывод можно говорить о паре двойственных задач линейного программирования.

Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей, как мы уже знаем, в нахождении максимального значения функции:

F=c1x1+c2x2+…cnxn

при условиях

Сравнивая две сформулированные задачи, видим, что двойственная задача составляется согласно следующим правилам:

1. Целевая функция исходной задачи задается на максимум, а целевая функция двойственной на минимум.

2. Матрица

составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица

в двойственной задаче получаются друг из друга транспонированием (т.е. заменой строк столбцами, а столбцов - строками).

3. Число переменных в двойственной задаче равно числу ограничений в системе исходной задачи, а число ограничений в системе двойственной задачи - числу переменных в исходной задаче.

4. Коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе исходной задачи, а правыми частями в соотношениях системы двойственной задачи - коэффициенты при неизвестных в целевой функции исходной задачи.

5. Если переменная xj исходной задачи может принимать только лишь положительные значения, то j-е условие в системе двойственной задачи является неравенством вида «>». Если же переменная xj может принимать как положительные, так и отрицательные значения, то 1 -соотношение в системе представляет собой уравнение. Аналогичные связи имеют место между ограничениями исходной задачи и переменными двойственной задачи. Если i - соотношение в системе исходной задачи является неравенством, то i-я переменная двойственной задачи . В противном случае переменная уj может принимать как положительные, так и отрицательные значения.

Двойственные пары задач обычно подразделяют на симметричные и несимметричные. В симметричной паре двойственных задач ограничения прямой задачи и соотношения двойственной задачи являются неравенствами вида « «. Таким образом, переменные обеих задач могут принимать только лишь неотрицательные значения.

Двойственная задача тесно связана задачей линейного программирования. Задача первоначальная называется исходной. Решение двойственной задачи может быть получено из решения исходной и наоборот. Связующим фактом этих двух задач являются коэффициенты Cjфункции исходной задачи. Данные коэффициенты называются свободными членами системы ограничений двойственной задачи. Коэффициенты Bi системы ограничений исходной задачи называются коэффициентами двойственной задачи. Транспонированная матрица коэффициентов системы ограничений исходной задачи является матрицей коэффициентов системы ограничений двойственной задачи.

Рассмотрим задачу использования ресурсов. У предприятия есть t видов ресурсов в количестве bi (i=1, 2,…, m) единиц, из которых выпускается n видов продукции. На изготовление 1 ед. i-й продукции тратится aij ед. t-гo ресурса, ее стоимость составляет Cj ед. Необходимо определить план выпуска продукции, обеспечивающий ее максимальный выпуск в стоимостном выражении. Примем за xj (j=1,2,…, n) количество ед. j-й продукций и составляет максимальное значение линейной функции

Z=C1x1+C2x2+ … +Cnxn

Определим ресурсы, которые потребуются для изготовления товара. Обозначим за единицу стоимости ресурсов единицу стоимости выпускаемого товара. А через уi (j=1,2,…, m) стоимость единицы i-го ресурса. Т.е. стоимость всех затраченных ресурсов, которые используются для изобретения единицы j-й продукции, составляет. Цена израсходованных ресурсов не должна превышать цены окончательного товара.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]