 
        
        - •Преимущества волоконно-оптических кабелей по сравнению с традиционными кабелями с медными жилами:
- •Основные конструктивные элементы волоконно-оптических кабелей
- •Усиливающие элементы
- •Важные параметры для волоконно-оптических кабелей
- •Кабель для внутренней прокладки
- •Кабель для использования вне помещений
- •Оптические кабели для подводных протяженных линий связи
- •Оптика «по горизонтали»
- •Стандартное обозначение волоконнооптических кабелей
- •Новые стандарты и технологии
Усиливающие элементы
Для увеличения допустимого растяжения волоконно-оптического кабеля в его конструкцию обязательно вводят силовые элементы. Величины допустимого растяжения в 1000-2000 Н (ньютонов) можно достичь с помощью использования кевларовых или стеклонитей. Как правило, этого показателя бывает вполне достаточно для кабелей общего назначения. Нити могут образовывать плотный слой, а могут и переплетаться. Считается, что кевларовые нити обеспечивают большее допустимое усилие на разрыв. Однако стеклонити еще и защищают от грызунов и являются барьером для распространения горения. Иногда параллельно с кевларовыми нитями применяют один центральный или пару боковых стержней. Дополнительные силовые элементы могут быть диэлектрическими или металлическими. Конструкция с центральным силовым элементом характерна для кабеля с большим числом волокон, которые группами размещаются вокруг силового элемента. Высокое допустимое усилие на разрыв в специальных типах кабелей, в которых эта величина должна иметь значение десятков килоньютонов, достигается с помощью стальных прутьев. В таких кабелях оптические волокна чаще располагаются не в термопластиковых, а в стальных гелезаполненных трубках. Величина допустимого продольного растяжения (Tensile performance) характеризует максимальное усилие, которое можно приложить в продольном направлении кабеля и при котором не произойдет изменение характеристик оптического волокна. При растяжении кабеля в первую очередь происходит воздействие на саму оболочку, и только потом — на оптическое волокно. В результате изменения температуры окружающей среды происходит естественное увеличение или уменьшение длины кабеля. Поэтому в группу этих характеристик также входит температурный диапазон, в котором можно хранить, эксплуатировать и монтировать кабель.
Важные параметры для волоконно-оптических кабелей
Сдавливающее усилие характеризует допустимую силу, с которой можно сдавить в поперечном направлении кабель при условии, что величина затухания в волокне останется в пределах нормы. Ударная нагрузка (Impact) характеризует защищенность кабеля от ударов. Максимальный изгиб кабеля (Cable bend) является еще одним важным параметром, который характеризует предельно допустимый радиус кривизны укладки кабеля. Его необходимо учитывать, когда речь идет о прокладке волоконно-оптического кабеля, например, в трубопроводах или кабельных каналах. Величина минимально допустимого радиуса изгиба часто находится в пределах 15-20 диаметров от наружной оболочки кабеля. Если пренебречь этим параметром, может нарушиться целостность световодов в кабеле. Кручение (Torsion) определяет способность оболочки кабеля обеспечивать защиту волокна при скручивании оболочки вокруг своей оси. Для кабеля с металлической броней допустимый угол скручивания меньше, чем для кабеля без брони. Защита от проникновения влаги (Water penetration) является важным параметром для волоконно-оптического кабеля, особенно если он предназначен для применения вне помещений.
Кабель для внутренней прокладки
Тип кабельной оболочки во многом определяется условиями эксплуатации. Для волоконно-оптического кабеля, который будет использоваться внутри помещений, главными характеристиками являются: пожарная безопасность;
 хорошая гибкость и простота монтажа;
 монтирование коннектора непосредственно на оптический световод;
 отсутствие геля внутри кабельной оболочки;
 отсутствие металлических элементов. Безусловно, самой важной характеристикой кабеля для прокладки внутри здания является его устойчивость к воздействию огня. Кабель должен иметь оболочку, которая не распространяет горение, не дымит, не выделяет галогенов и других токсичных соединений под воздействием пламени. При этом подразумевается, что данными свойствами обладает не только наружная оболочка, но и внутренние элементы конструкции. Таким требованиям отвечает кабель с плотным буфером (Tight-Buffer), у которого каждое волокно дополнительно заключено в 900 микронную оболочку. Эта оболочка обеспечивает достаточную для соответствующих условий эксплуатации защиту от проникновения влаги. Сам волоконно оптический кабель с плотным буфером легкий и очень гибкий. Для прокладки внутри зданий чаще всего применяют так называемый «сухой» кабель, который не содержит геля. Одна из причин, почему именно такой кабель рекомендуется использовать внутри помещений, состоит в том, что гель может стать средой распространения огня внутри кабельной оболочки, даже если сама внешняя оболочка не поддерживает горения. Другая причина заключается в явлении, которое иногда называют Axial Migration, что можно перевести как «перетекание геля». Если гелесодержащий кабель применяется для межэтажной связи сегментов сети, существует большая вероятность того, что летом в волоконно-оптической кроссовой панели нижнего этажа окажется гель, а последствия этого могут быть самыми плачевными. Вместо вытекшего водоотталкивающего состава в трубке с волокном может конденсироваться влага, которая ухудшает параметры оптического световода. Такая проблема возникает, если кабель располагается, например, в неотапливаемой шахте. Кроме того, это может привести к изменению механических характеристик самого кабеля. Дело в том, что количество оптического волокна в гелесодержащей трубке превышает его длину — свободное размещение волокна в трубке в нормальном состоянии напоминает спираль. Само волокно в буфере диаметром 250 микрометров (мкм) закрепляется в месте соединения с коннекторами или гильзами пигтейлов, то есть только в двух точках. В случае вертикального расположения кабеля вместе с гелем сверху вниз перемещается и волокно, в результате чего в верхней части кабеля волокно распрямляется и может находиться в натянутом состоянии. Теперь все растягивающее усилие, прикладываемое к внешней оболочке, в равной степени передается и тому волокну, которое не имеет дополнительного запаса длины. Растяжение внешней оболочки может возникнуть, например, в теплое время года в результате естественного увеличения длины при повышении температуры. В конечном итоге это приведет к изменению характеристик волокна, микротрещинам или даже вырыванию световода из оптического коннектора. В нижней части вертикально расположенного кабеля будет, наоборот, наблюдаться избыток волокна, что также может отразиться на механической прочности кабеля и, следовательно, на надежности волоконно-оптической линии связи в целом. Для кабеля, который применяется внутри помещений, предпочтительной считается установка коннекторов непосредственно на волокно. В этом случае обеспечивается дополнительное крепление за плотный буфер диаметром 900 мкм, что в некоторой степени позволяет снять возможные напряжения с оптического волокна. Кроме того, реализация технологии Fiber to the Desk базируется на подключении рабочих мест к СКС с использованием волоконно-оптического кабеля, который необходимо оконечить в специальной розетке. Такие розетки не приспособлены для того, чтобы монтировать в них сплайс-кассеты для гильз сварных соединений, а требуют монтажа коннекторов непосредственно на волокно. Кабель Tight Buffer с буфером диаметром 900 мкм наилучшим образом подходит для решения этой задачи.
