- •2. Релейная защита. Назначение, требования.
- •3. Категорийность потребителей электроэнергии. Требования.
- •6. Реле. Классификация. Назначение.
- •7. Регулирование напряжения в электрических сетях.
- •8. Трансформаторы тока. Назначение. Схема.
- •9. Проходные изоляторы. Назначение. Классификация. Вводы. Назначение вводов.
- •10. Мероприятия, направленные на повышение надежности электроснабжения.
- •4. Источники питания оперативных цепей устройств релейной защиты и автоматики.
- •5. Падение, потери и отклонение напряжения. Таблица отклонения напряжений.
- •1. Суточные графики нагрузок, график по продолжительности.
- •50. Защита от замыкания на землю в сетях с изолированной нейтралью и в сетях с глухозаземленной нейтралью.
- •29. Изоляторы. Назначение. Классификация. Полимерные изоляторы, их преимущества перед фарфоровыми и стеклянными.
- •30/32. Релейная защита силовых трансформаторов 10/0,038кВ.
- •31. Вакуумные выключатели. Преимущества вакуумных выключателей перед маслянными.
- •33/35. Маслянный выключатель серии вмп-10. Устройство. Привод маслянного выключателя. Отличие выкл. Вмп-10 от впм-10.
- •34. Трансформаторные подстанции 10/0,38кВ. Схемы подключения тп 10/0,38 кВ к электрическим сетям.
- •36. Тп 10/0,38 кВ проходного типа. Преимущества перед ктп-10/0,038.
- •37.Малообъемные масляные выключатели 110-220кВ. Их преимущества перед многообъемными.
- •38. Закрытые тп-10/0,38. Их преимущества.
- •39. Распределительный пункт рп-10кВ. Преимущества рп-10 перед тп 10/0,38.
- •40. Автоматическое включение резерва (авр). Назначение. Классификация.
- •41. Пост автоматического секционирования пас-10. Назначение. Схема включения пас-10.
- •42. Делительная автоматика. Назначение. Классификация.
- •43. Блочные трансформаторные подстанции 35/10 кВ. Примущества бтп-35/10 кВ перед существующими пс-35/10 кВ.
- •44. Надежность электроснабжения. Устойчивость энергосистемы.
- •45.Приводы выключателей. Классификация. Преимущества электромагнитного привода перед пружинно-грузовым.
- •46. Автоматическое повторное включение. Назначение. Классификация.
- •47. Электрические схемы подстанций 35/10кВ и подстанций напряжением 110кВ и выше. Назначение секционного выключения.
- •48. Нетрадиционные источники электроэнергии. Перспективы развития.
- •49.Блокировки на подстанциях. Назначение. Классификация.
- •51. Комплексные тп типа ктпб – 10/0,38 кВ.
- •52. Защита вл – 0,38кВ автоматическими выключателями.
- •55. Провода применяемые при сооружении лэп.
- •56. Методы расчета токов к.З.
- •57. Нетрадиционные источники энергии.
- •21. Выключатели нагрузки.
- •22. Газовая защита
- •23. Короткозамыкатели
- •24. Дифференциальная защита силовых трансформаторов
- •25. Отделители
- •26. Перегрузка силовых трансформаторов
- •27. Малообъемные маслянные выключатели
- •28. Режим работы электрических сетей.
- •29. Изоляторы
- •30. Релейная защита силовых трансформаторов.
5. Падение, потери и отклонение напряжения. Таблица отклонения напряжений.
Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением. Под падением напряжения также понимают величину на которую меняется потенциал при переходе из одной точки цепи в другую.
Потеря напряжения показывает, на сколько вольт напряжение в конце линии меньше, чем напряжение в ее начале.
Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.
Отклонение напряжения в той или иной точке сети происходит под воздействием изменения нагрузки в соответствии с её графиком.
Таблица 10.3 – Влияние отклонения напряжения в пределах от -10 до +10% на характеристики асинхронных электродвигателей.
Пусковой и вращающий момент |
-19% |
+21% |
Синхронная частота вращения |
const |
const |
Скольжение |
+23% |
-17% |
Частота вращения при номинальной нагрузке |
-1,5% |
+1% |
КПД а) при номинальной нагрузке б) при нагрузке 75% в) при нагрузке 50% |
-2% const от -1 до -2% |
+1% const от -1 до +2% |
а) 100% б) 75% в) 50% |
+1% от +2 до +3% от +4 до +5% |
-3% -4% от -5 до -6% |
Ток ротора при номинальной нагрузке |
+14% |
-11% |
Ток статора при номинальной нагрузке |
+10% |
-7% |
Пусковой ток |
от -10 до -12 % |
от +10 до +12% |
Прирост t обмотки при номинальной нагрузке |
от +5 до +6 оС |
Практически без изменений |
1. Суточные графики нагрузок, график по продолжительности.
Характеристикой нагрузки является величина потребляемой активной и реактивной мощности. Мощность зависит от числа и режима работы разных электроприёмников. В течение суток мощность может изменяться в широких пределах.
Характеристика потребителей по потребляемой мощности будет полной лишь тогда, когда известна вся совокупность возможных значений мощности необходимой данным потребителям. Эта характеристика даётся графиками нагрузки, которые представляют собой плавные, ломаные или ступенчатые кривые, построенные в прямоугольных осях координат (по оси ординат откладываются мощности нагрузки, а по оси абсцисс- время, в течение которого рассматривается её изменение).
График нагрузки, характеризующий изменение мощности, потребляемой за одни сутки, называется суточным графиком.
Графики различных потребителей существенно отличаются друг от друга. Но в графиках имеются некоторые общие количественные показатели. К ним относятся наибольшее (Рнб) и наименьшее (Рнм) значения мощности нагрузки. Очертания графиков меняются в зависимости от того – рабочие сутки это или выходные дни.
Суточные графики одного потребителя в различные времена года отличаются друг от друга. Поэтому для представления о потреблении мощности пользуются суточными графиками для трёх характерных периодов работы потребителей: зимнего, летнего и весенне-осеннего. Соответственно различают наибольшую и наименьшую нагрузки для этих периодов. Для большинства районов России зимний график характеризуется максимальным значением наибольшей мощности Рнб, а летний – минимальным значением наименьшей мощности Рнм.
Суточные графики для отмеченных периодов и их число суток в году, позволяют получить годовые нагрузки.
Также широко используются годовые графики по продолжительности нагрузки.
Эти графики представляют собой диаграммы постепенно убывающих значений мощности, каждому из которых соответствует время, в течение которого данная мощность в продолжение года требуется потребителю.
График максимумов нагрузки
По оси абсцисс откладываются дни года или месяцы в календарном порядке, а на оси ординат – максимальные значения нагрузки за данные дни или месяцы. Для такого графика характерен спад в летние месяцы из-за осветительной нагрузки и возрастание к концу года из-за присоединения новых потребителей.
Суточный и годовой графики позволяют определить энергию, получаемую потребителем, соответственно, за сутки и за год.
При известной мощности нагрузки Рн получаемая потребителем энергия за малый промежуток времени.
ΔW=PН∙Δt
или при переходе к пределам:
dW=Pн∙dt (1)
Энергия, получаемая за время t при изменяющейся во времени мощности определяется при интегрировании уравнения (1):
Wн=∫0tPн(t)∙dt (2)
Это выражение характеризует площадь, ограниченную осями координат и графиком нагрузки. Вычисление её не представляет труда, если график имеет вид ступенчатой линии.
Когда очертание графика имеет иной вид, его заменяют ступенчатым, сохраняя характерные точки исходного графика (наибольшие и наименьшие нагрузки и отдельные закономерные повышения и понижения мощности) и выдерживая равенство площадей исходного и ступенчатого графиков.
Графики нагрузок удобно характеризовать временем использования наибольшей (максимальной) нагрузки Тнб (Тmax). Этим показателем определяется время, в течение которого потребитель, работая с наибольшей нагрузкой, получил бы из сети то же количество энергии, что и при работе по действительному графику.
На рис. приведен график, поясняющий определение времени Тнб. Энергия, полученная за год, определяется площадью, ограниченной этим графиком и равной при 8760 часах в году.
ΔW=∫08760Pн(t)∙dt (2)
Та же площадь, при неизменной нагрузке, равной наибольшей мощности м.б. вычислена:
W=PНБ∙ТНБ
т.е. время использования наибольшей нагрузки определяется отношением площади, ограниченной действительным графиком нагрузки, к ординате, отвечающей наибольшей мощности нагрузки.
ТНБ=(∫08760Pн(t)∙dt)/PНБ
Время Тнб может вычисляться применительно как к годовому, так и к суточному графику.
Продолжительность использования наибольших активных нагрузок в течение года в зависимости от числа и продолжительности смен:
Продолжительность смены, ч |
Годовое число часов работы при числе смен, ч |
||
одна |
две |
три |
|
8 |
2250 |
4500 |
6400 |
7 |
2000 |
3950 |
5870 |
Потребители потребляют кроме активной мощности ещё и реактивную мощность. Поэтому необходимо знание графиков реактивной мощности. Они могут быть получены аналогично графикам активной мощности.
При проектировании требующаяся реактивная мощность учитывается приближённо, используется коэффициент мощности (Cosφн), значение которого либо принимается неизменным, либо задаётся применительно к периодам наибольшей и наименьшей активной мощности нагрузки (при этом Cosφн может принимать разные числовые значения).
