- •2. Релейная защита. Назначение, требования.
- •3. Категорийность потребителей электроэнергии. Требования.
- •6. Реле. Классификация. Назначение.
- •7. Регулирование напряжения в электрических сетях.
- •8. Трансформаторы тока. Назначение. Схема.
- •9. Проходные изоляторы. Назначение. Классификация. Вводы. Назначение вводов.
- •10. Мероприятия, направленные на повышение надежности электроснабжения.
- •4. Источники питания оперативных цепей устройств релейной защиты и автоматики.
- •5. Падение, потери и отклонение напряжения. Таблица отклонения напряжений.
- •1. Суточные графики нагрузок, график по продолжительности.
- •50. Защита от замыкания на землю в сетях с изолированной нейтралью и в сетях с глухозаземленной нейтралью.
- •29. Изоляторы. Назначение. Классификация. Полимерные изоляторы, их преимущества перед фарфоровыми и стеклянными.
- •30/32. Релейная защита силовых трансформаторов 10/0,038кВ.
- •31. Вакуумные выключатели. Преимущества вакуумных выключателей перед маслянными.
- •33/35. Маслянный выключатель серии вмп-10. Устройство. Привод маслянного выключателя. Отличие выкл. Вмп-10 от впм-10.
- •34. Трансформаторные подстанции 10/0,38кВ. Схемы подключения тп 10/0,38 кВ к электрическим сетям.
- •36. Тп 10/0,38 кВ проходного типа. Преимущества перед ктп-10/0,038.
- •37.Малообъемные масляные выключатели 110-220кВ. Их преимущества перед многообъемными.
- •38. Закрытые тп-10/0,38. Их преимущества.
- •39. Распределительный пункт рп-10кВ. Преимущества рп-10 перед тп 10/0,38.
- •40. Автоматическое включение резерва (авр). Назначение. Классификация.
- •41. Пост автоматического секционирования пас-10. Назначение. Схема включения пас-10.
- •42. Делительная автоматика. Назначение. Классификация.
- •43. Блочные трансформаторные подстанции 35/10 кВ. Примущества бтп-35/10 кВ перед существующими пс-35/10 кВ.
- •44. Надежность электроснабжения. Устойчивость энергосистемы.
- •45.Приводы выключателей. Классификация. Преимущества электромагнитного привода перед пружинно-грузовым.
- •46. Автоматическое повторное включение. Назначение. Классификация.
- •47. Электрические схемы подстанций 35/10кВ и подстанций напряжением 110кВ и выше. Назначение секционного выключения.
- •48. Нетрадиционные источники электроэнергии. Перспективы развития.
- •49.Блокировки на подстанциях. Назначение. Классификация.
- •51. Комплексные тп типа ктпб – 10/0,38 кВ.
- •52. Защита вл – 0,38кВ автоматическими выключателями.
- •55. Провода применяемые при сооружении лэп.
- •56. Методы расчета токов к.З.
- •57. Нетрадиционные источники энергии.
- •21. Выключатели нагрузки.
- •22. Газовая защита
- •23. Короткозамыкатели
- •24. Дифференциальная защита силовых трансформаторов
- •25. Отделители
- •26. Перегрузка силовых трансформаторов
- •27. Малообъемные маслянные выключатели
- •28. Режим работы электрических сетей.
- •29. Изоляторы
- •30. Релейная защита силовых трансформаторов.
46. Автоматическое повторное включение. Назначение. Классификация.
Назначение: одно из средств электроавтоматики, повторно включает отключившийся выключатель через определённое время, бывает однократного, двукратного и трехкратного действия.
Классификация:
В зависимости от количества фаз, на которые действуют устройства АПВ:
- 1Ф — включает одну отключенную фазу;
- 3Ф — включает все три фазы участка цепи;
- комбинированные — включает одну или три фазы в зависимости от характера повреждения участка сети;
3Ф ус-ва АПВ могут в зависимости от условий работы сети:
- простые;
- несинхронные;
- быстродействующие;
- с проверкой наличия напряжения;
- с проверкой отсутствия напряжения;
- с ожиданием синхронизма;
- с улавливанием синхронизма;
- в сочетании с самосинхронизацией генераторов и синхронных компенсаторов;
Особой разновидностью АПВ является частотное автоматическое повторное включение:
однократного/двукратного действия;
По способу воздействия на выключатель АПВ могут быть:
- механические — они встраиваются в пружинный привод выключателя.
- электрические — воздействуют на электромагнит включения выключателя.
По типу защищаемого оборудования АПВ: линий, шин, электродвигателей и трансформаторов.
47. Электрические схемы подстанций 35/10кВ и подстанций напряжением 110кВ и выше. Назначение секционного выключения.
См.листок – схемы.
секционный выключатель - способен производить отключения при любых режимах работы сети, буд-то нормальный режим, режим перегрузки, режим короткого замыкания. Для отключения цепи (гашения дуги между контактами при разрыве цепи) в случае протекания токов короткого замыкания (как и всех остальных) в таком выключателе предусмотрена специальная камера гашения дуги, рассчитанная на токи короткого замыкания цепи.
48. Нетрадиционные источники электроэнергии. Перспективы развития.
Ветроэнергетическая установка способна превращать энергию ветра в электроэнергию. Запасы ветровой энергии на территории нашей страны огромны, так как во многих районах среднегодовая скорость ветра составляет б м/с. Устройство ветроэнергетической установки достаточно простое: вал ветряного колеса, способного вращаться под действием ветра, передает вращение ротору генератора электрической энергии. Стоимость производства электроэнергии на ветровых электростанциях ниже, чем на любых других. Недостатки ветроэнергетических установок — низкий коэффициент полезного действия, небольшая мощность. Применяются на — на нефтяных разработках, горных пастбищах, в пустынях и т. п.
Приливная энергетика использует для производства электроэнергии энергию прилива и отлива Мирового океана. Два раза в сутки уровень океана то поднимается, то опускается. Это происходит под действием гравитационных сил Солнца и Луны, которые притягивают к себе массы океанской воды. У берега моря разности уровней воды во время прилива и отлива могут достигать более 10 м. Если в заливе на берегу моря в устье реки сделать плотину, то в таком водохранилище во время прилива можно создать запас воды, которая при отливе будет спускаться в море и вращать гидротурбины. Основными недостатками такого способа производства электроэнергии являются неравномерность выработки электроэнергии во времени и необходимость сооружения дорогостоящих плотин и резервуаров для воды.
Гелиоэнергетика (энергия Солнца). В настоящее время получение электроэнергии от гелиоустановок осуществляется с помощью солнечных батарей. Основу таких батарей составляют фотоэлементы — кристаллы кремния, покрытые тончайшим, прозрачным для света слоем металла. Поток фотонов — частиц света, проходя сквозь слой металла, выбивает электроны из кристалла. Электроны при этом начинают концентрироваться в слое металла, поэтому между слоем металла и кристаллом возникает разность потенциалов. Если тысячи таких фотоэлементов соединить параллельно, то получается солнечная батарея, способная питать электроэнергией электронную аппаратуру на космических кораблях, спутниках. В южных районах, где много солнечных дней в году, размещение на крышах домов солнечных батарей может частично обеспечить потребность в необходимой электроэнергии. Такие батареи используют и для питания электронных часов, калькуляторов и других устройств.
МГД-генераторы. Основу современной электроэнергетики, как было уже отмечено, составляют теплоэлектростанции и гидроэлектростанции, в которых очень велики потери при преобразовании тепловой энергии (от сжигания топлива на ТЭС) или механической энергии (на ГЭС) в электрическую. Техническим устройством, в котором таких потерь практически нет, является магнитогидродинамический генератор (МГД-генератор). Его действие основано на явлении электромагнитной индукции: в проводнике, движущемся в магнитном поле, возникает электрический ток. В МГД-генераторе происходит преобразование энергии, движущейся в магнитном поле плазмы, — раскаленного до очень высокой температуры газа — непосредственно в электроэнергию. Электрический ток, образованный свободными электронами и положительными ионами, возникает непосредственно в плазме и отдается во внешнюю цепь. Основная техническая проблема при создании МГД-генерато-ров — получение высоких температур (несколько тысяч градусов), необходимых для образования плазмы — газообразной смеси из свободных электронов, положительных ионов и нейтральных атомов.
