- •Задание 5. Прямая и плоскость.
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Задание 1. Комплексные числа.
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений.
- •Задание 4. Прямая на плоскости
- •5.4 Площадь грани а а а ; 5.5 объем пирамиды; 5.6 уравнение плоскости а а а ;
- •6.1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 8. Найти производные функций:
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •1.1. Построить числа на комплексной плоскости: , , , ,
- •1.2. Выполнить действия: a) ; б) , в) , г) ,
- •1.3. Записать комплексное число в тригонометрической и показательной форме:
- •Задание 4. Прямая на плоскости.
- •4.3. Составить уравнения сторон треугольника. 4.4.Составить уравнение прямой вn // ас.
- •4.5. Составить уравнение медианы сд. 4.6.Уравнение высоты ае, найти ее длину.
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 8. Найти производные функций:
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •6.1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •Задание 10. Исследование функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Задание 4. Прямая на плоскости
- •4.5. Составить уравнение медианы сд. 4.6.Уравнение высоты ае, найти ее длину.
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание7. Предел функции.
- •Задание 8. Найти производные функций:
- •Задание 9. Применение производной.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Задание 1. Комплексные числа.
- •1.2. Выполнить действия: a) ; б) , в) , г) ,
- •1.3. Записать комплексное число в тригонометрической и показательной форме:
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений.
- •Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Вариант 7. Задание 1. Комплексные числа.
- •1.2. Выполнить действия: a) ; б) , в) , г) ,
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений. Решить систему методом Крамера, методом Гаусса и матричным методом: Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Вариант 8. Задание 1. Комплексные числа.
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений. Решить систему методом Крамера, методом Гаусса и матричным методом: Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Вариант 9. Задание 1. Комплексные числа.
- •1.2. Выполнить действия: a) ; б) , в) , г) ,
- •1.3. Записать комплексное число в тригонометрической и показательной форме:
- •1.4. Записать комплексные числа в алгебраической форме: : ,
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений.
- •Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •Задание 9. Применение производной.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Вариант 10. Задание 1. Комплексные числа.
- •1.2. Выполнить действия: a) ; б) , в) , г) ,
- •1.3. Записать комплексное число в тригонометрической и показательной форме:
- •1.4. Записать комплексные числа в алгебраической форме: : ,
- •Задание 2. Матрицы.
- •Задание 3. Системы уравнений.
- •Задание 4. Прямая на плоскости
- •Задание 5. Прямая и плоскость.
- •1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
- •Задание 7. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Задание 14. Дифференциальное и интегральное исчисление функций нескольких переменных.
Задание 1. Комплексные числа.
1.1. Построить числа
на комплексной плоскости:
,
,
,
,
,
1.2. Выполнить действия: a) ; б) , в) , г) ,
если
,
.
1.3.
Записать комплексное число в
тригонометрической и показательной
форме:
1.4.
Записать комплексные числа в алгебраической
форме:
,
Z2=
3( cos
p/3+
i
sin
p/3)
1.5.
Возвести в степень:
Задание 2. Матрицы.
Вычислить: 2А – В
+ АВ, если
,
Задание 3. Системы уравнений.
Решить
систему методом Крамера, методом Гаусса
и матричным методом:
Задание 4. Прямая на плоскости
В
АВС
даны координаты вершин:
,
,
4.1.Построить чертеж; 4.2. Найти периметр треугольника.
4.3. Составить уравнения сторон треугольника. 4.4. Составить уравнение прямой ВN // АС.
4.5. Составить уравнение медианы СД. 4.6. Уравнение высоты АЕ, найти ее длину.
4.7. Найти углы треугольника. 4.8. Найти координаты центра тяжести.
Задание 5. ПРЯМАЯ И ПЛОСКОСТЬ. Даны координаты вершин пирамиды А А А А .
А (1; 1; 1), А (-1; 4; 1), А (-1; 1; 7), А (1; 4; 9). Найти:
5.1 длину ребра А А ; 5.2 угол между ребрами А А и А А ; 5.3 уравнение прямой А А ;
5.4 Площадь грани а а а ; 5.5 объем пирамиды; 5.6 уравнение плоскости а а а ;
5.7 угол между ребром А А и гранью А А А ; 5.8 уравнение высоты и ее длину, опущенной
из вершины А на грань А А А ; 5.9 сделать чертеж.
Задание 6. КРИВЫЕ ВТОРОГО ПОРЯДКА.
6.1.Найти координаты вершины и фокусов параболы, составить уравнения оси и директрисы параболы:
а/ х2-10х +20у-15=0, б/ у2- 8у -6х+ 4=0.
6.2.
Построить
кривые по данным уравнениям: а) (х
-5)
+(у
+1)
=
4; б)
;
в)
Задание 7. Предел функции.
7.1.
Вычислить предел функции при х
х
:
f(x)
=
а) х
=
-1; б) х
=
1; в) х
=
.
7.2.
Вычислить предел функции при х
х
:
f(x)
=
х
=
8.
7.3.
Вычислить предел функции при х
0: f(x)
=
7.4.
Вычислить
предел функции при х
:
f
(x)
=
Задание 8. Найти производные функций:
а)
у =
,
б) у =
,
в) у = ctg
3x
· e
,
г) y
= arctg
ln
8x.
Задание 9. Применение производной.
а) Составить уравнения касательной и нормали к графику кривой у =- 1/2х2 + 3х - 1, в точке
с абсциссой x0 = 2
б) Найти максимальную скорость, если точка движется по закону S(t) = - t3+ 6t2 + 24t - 5
в) Найти наибольшее и наименьшее значения функции f(x) = 1/3x3 – x2 + 6 на -3; 2.
Задание 10. ИССЛЕДОВАНИЕ ФУНКЦИИ.
Исследовать данные функции методом дифференциального исчисления и построить их графики:
а) у = -1/3х
+4х
+2 б) у =
Задание 11. Интегральное исчисление.
1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
2. Вычислить неопределенный интеграл в заданиях д, е.
3.Вычислить определенный интеграл в задании ж.
а)
б)
в)
г)
dx
д)
е)
ж)
Задание 12. Площадь фигуры.
С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями. Сделать чертеж: а) х - у +2 = 0, х + у -4 = 0, у = 0. б) у = х3 -1, у = х -4, х = 0, х = 2.
Задание 13. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА.
Вычислить
приближенное значение определенного
интеграла с помощью формулы Симпсона,
разбив отрезок на 10 частей, с точностью
до 0,001:
dx
