
- •Проблема коррозии металлов
- •1.2 Термодинамика и кинетика коррозии
- •1.3 Классификация коррозии
- •Глава 2 теория газовой коррозии
- •2.1 Механизм химической коррозии и окисления металлов
- •2.2 Адсорбция кислорода на металлах
- •2.3 Механизм высокотемпературного окисления
- •2.4 Теория жаростойкого легирования
- •2.5 Внутренние и внешние факторы газовой коррозии
- •Внешние факторы газовой коррозии
- •Защита от газовой коррозии
- •Глава 3 Теория электрохимической коррозии
- •3.1 Первые представления об электрохимическом механизме коррозии
- •3.2 Термодинамика электрохимической коррозии.
- •3.3 Кинетика анодной реакции
- •3.4 Пассивность
- •Глава 4 внутренние и внешние факторы электрохимической коррозии
- •4.1 Термодинамическая устойчивость
- •4.2 Состав и структура сплава
- •4.3 Состав и концентрация коррозионной среды
- •4.4 Кислотность.
- •4.5 Температура, давление и перемешивание.
- •4.6 Внешний электрический ток и радиация
- •Глава 1 общие сведения о коррозии металлов
- •1.1 Проблема коррозии
- •1.2 Термодинамика и кинетика коррозии
- •1.3 Классификация коррозии
- •1.4 Показатели коррозии
- •4.7 Биологическая коррозия
- •Глава 5 Коррозионно-механическое разрушение металлов
- •5.1 Влияние статических напряжений
- •5.2 Коррозионное растрескивание.
- •5.3 Коррозионная усталость.
- •5.4 Коррозия при трении.
- •Глава 6 Локальная коррозия.
- •6.1 Межкристаллитная коррозия
- •6.2 Контактная коррозия
- •6.3 Щелевая коррозия
- •6.4 Точечная (питтинговая) коррозия
- •Глава 7 Коррозия в естественных условиях
- •7.1 Атмосферная коррозия
- •7.2 Подземная коррозия
- •7.3 Коррозия блуждающими токами
- •7.4 Морская коррозия
- •Глава 8 Меры борьбы с коррозией металлов.
- •8.1 Воздействие на металл
- •8.2 Воздействие на среду
- •8.3 Воздействие на конструкцию
- •Глава 9 Металлические защитные покрытия
- •9.1 Гальванические покрытия
- •9.2 Термодиффузионные покрытия
- •9.4 Плакирование
- •Глава 10 Неметаллические защитные покрытия
- •10.1 Неорганические покрытия
- •10.2 Лакокрасочные покрытия
- •10.3 Покрытие смолами и пластмассами
- •10.4 Эмали
- •Глава 11 Ингибиторы коррозии и антикоррозионные смазки
- •11.1 Анодные ингибиторы
- •11.2 Катодные ингибиторы
- •11.3 Антикоррозионные смазки
- •Глава 12 Электрохимическая защита
- •12.1 Катодная защита
- •12.2 Протекторная защита
- •12.3 Анодная защита
- •– Предотвращение фреттинг-коррозии и уменьшение усилия разборки узлов металлургического и машиностроительного оборудования;
- •Оглавление
- •8.1 Воздействие на металл 56
- •8.3 Воздействие на конструкцию 57
- •9.1 Гальванические покрытия 61
- •9.3 Метод погружения в расплавленный металл
6.2 Контактная коррозия
Контактной коррозией называется электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите. При этом возникает коррозионный гальванический элемент, работа которого влияет на скорость коррозии каждого контактирующего металла.
При контакте двух металлов А и К со стационарными потенциалами в определенной среде сила тока коррозионного элемента (пары) определяется сопротивлением катодного и анодного процессов и омическим сопротивлением. С увеличением разности между стационарными потенциалами катода и анода, уменьшением омического сопротивления и сопротивления катодного и анодного процессов сила тока пары и, следовательно, контактная коррозия увеличивается.
В многоэлектродной системе при омическом сопротивлении, близком к нулю, все электроды, потенциал которых отрицательнее общего потенциала системы, работают в качестве анодов, а электроды, потенциал которых положительнее общего потенциала – в качестве катодов.
На контактную коррозию металлов большое влияние оказывают площади катодов и анодов, состав среды, перемешивание нейтрального раствора и др. Скорость контактной коррозии увеличивается с увеличением площади катода при постоянной площади анода. При перемешивании предельный диффузионный ток увеличивается и возрастает скорость коррозии. (это пары Fe-Cu, Fe-нерж. сталь, Zn-Fe, Zn-Cu).
В морской воде стационарные потенциалы металлов увеличиваются в ряду Mn→Zn→Al→Cd→Fe→Pb→Sn→Ni→Cu→Ti→Ag. Поэтому каждый последующий металл при контактировании с предыдущим усиливает его коррозию. Чем дальше удалены металлы друг от друга в указанном ряду, тем больше контактная коррозия. Так, например, стационарный потенциал дуралюмина (сплав системы Al-Cu) в морской воде более отрицателен, чем у Ni, Cu, стали 12Х17, Sn, Pb, Fe, но более положительный, чем у Cd, Al, Zn. В соответствии с этим контактная коррозия дуралюмина в морской воде усиливается при контакте с Cu, Ni, нерж. сталью, Fe, Sn и Pb. При контакте с Cd, Al и Zn коррозия дуралюмина уменьшается.
Контактная коррозия может проявляться и в атмосферных условиях. Она сильно зависит от состава атмосферы. Например, коррозия магниевого сплава МЛ5 в контакте с алюминиевым сплавом В95 при переходе от промышленной атмосферы к морской увеличивается в несколько раз. В атмосферных условиях не возникает контактной коррозии между медью, серебром, и золотом, между железом, углеродистыми сталями, свинцом и оловом, между Al, Zn и Cd.
Защиту от контактной коррозии осуществляют рациональным выбором контактирующих металлов и сплавов, введением изоляционных прокладок (мастики, герметики) между металлами с различными электродными потенциалами, а также нанесением металлических покрытий на детали, сочленяемые в процессе сборки, введением ингибиторов.
6.3 Щелевая коррозия
Щелевой коррозией называют усиление коррозии в щелях и зазорах между металлами, а также в местах неплотного контакта металла с неметаллическими коррозионно-инертным материалами. Наибольшую склонность к щелевой коррозии обнаруживают пассивирующиеся металлы и сплавы – нержавеющие хромистые и хромоникелевые стали, алюминиевые и магниевые сплавы.
Развитие щелевой коррозии связывают с затруднением доступа кислорода из объема электролита в зазор, изменением рН раствора электролита в зазоре и возникновением коррозионного элемента типа щель – открытая поверхность. Затруднение доступа кислорода вызывает торможение катодного процесса, в результате чего электродный потенциал металла в зазоре понижается и облегчается протекание анодного процесса.
Особенно чувствительны к щелевой коррозии металлы и сплавы, пассивное состояние которых связано с наличием в электролите растворенного кислорода и других пассиваторов. Затруднение доступа этих веществ в зазор приводит к снижению их концентрации ниже критического значения, в результате чего металл переходит из пассивного в активное состояние и происходит щелевая коррозия. Такое явление наблюдается, например, при коррозии железа в растворе, содержащем 30 мг/л NaCl, 70 мг/л Na2SO4 и 250 мг/л NaNO3. В этих растворах железо находится в пассивном состоянии. В зазоре, где обновление раствора затруднено, концентрация пассиваторов уменьшается ниже критического значения, и железо на этом участке подвергается усиленной коррозии.
Углеродистые и низколегированные стали в нейтральных растворах (NaCl, морская вода и др.) находятся в активном состоянии, скорость их коррозии контролируется преимущественно катодным процессом, в зазоре она меньше, чем на свободно омываемой раствором электролита поверхности. При наличии на стальной детали зазора и открытой поверхности сталь в зазоре работает анодом. Однако сила тока этого элемента невелика из-за образования в зазоре продуктов коррозии.
Нержавеющие стали в условиях, когда в зазор затруднен доступ окислителя, находятся в активном состоянии и подвергаются интенсивной щелевой коррозии. Усилению ее способствует также понижение рН раствора в зазоре до ~3,4-4,0.
Для борьбы со щелевой коррозией уплотняют зазоры и щели неметаллическими материалами, не вызывающими коррозии неметаллическими материалами, не вызывающими коррозии основного металла, применяют электрохимическую защиту, ингибиторы коррозии, рациональное конструирование, выбирают материалы, стойкие к коррозии.